Minimizing Weighted Tree Grammars Using Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Andreas Maletti

ABSTRACT

Weighted tree grammars (for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization. More... »

PAGES

56-68

Book

TITLE

Finite-State Methods and Natural Language Processing

ISBN

978-3-642-14683-1
978-3-642-14684-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7

DOI

http://dx.doi.org/10.1007/978-3-642-14684-8_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018006839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya\u00a035, 43002, Tarragona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.410367.7", 
          "name": [
            "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya\u00a035, 43002, Tarragona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maletti", 
        "givenName": "Andreas", 
        "id": "sg:person.016645332751.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Weighted tree grammars\u00a0(for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization.", 
    "editor": [
      {
        "familyName": "Yli-Jyr\u00e4", 
        "givenName": "Anssi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kornai", 
        "givenName": "Andr\u00e1s", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakarovitch", 
        "givenName": "Jacques", 
        "type": "Person"
      }, 
      {
        "familyName": "Watson", 
        "givenName": "Bruce", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14684-8_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14683-1", 
        "978-3-642-14684-8"
      ], 
      "name": "Finite-State Methods and Natural Language Processing", 
      "type": "Book"
    }, 
    "keywords": [
      "parse trees", 
      "tree grammars", 
      "notion of simulation", 
      "context-free grammars", 
      "natural language", 
      "fast minimization", 
      "types of simulations", 
      "weighted context-free grammars", 
      "new notion", 
      "better reduction rate", 
      "grammar", 
      "bisimulation", 
      "semantics", 
      "trees", 
      "simulations", 
      "toolkit", 
      "language", 
      "sentences", 
      "commutative semirings", 
      "important tool", 
      "set", 
      "notion", 
      "WTG", 
      "tool", 
      "minimization procedure", 
      "strings", 
      "semirings", 
      "minimization", 
      "extension", 
      "one", 
      "types", 
      "size", 
      "procedure", 
      "reduction rate", 
      "rate", 
      "idempotents", 
      "generate trees", 
      "size of WTG", 
      "Weighted Tree Grammars"
    ], 
    "name": "Minimizing Weighted Tree Grammars Using Simulation", 
    "pagination": "56-68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018006839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14684-8_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14684-8_7", 
      "https://app.dimensions.ai/details/publication/pub.1018006839"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_235.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14684-8_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14684-8_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nacb94594facd48d996f4c3f19aab529e
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Weighted tree grammars (for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization.
7 schema:editor Na59ad4f9ab7342009389413b5764b572
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N831567eafd7c465383529840fac6f9aa
12 schema:keywords WTG
13 Weighted Tree Grammars
14 better reduction rate
15 bisimulation
16 commutative semirings
17 context-free grammars
18 extension
19 fast minimization
20 generate trees
21 grammar
22 idempotents
23 important tool
24 language
25 minimization
26 minimization procedure
27 natural language
28 new notion
29 notion
30 notion of simulation
31 one
32 parse trees
33 procedure
34 rate
35 reduction rate
36 semantics
37 semirings
38 sentences
39 set
40 simulations
41 size
42 size of WTG
43 strings
44 tool
45 toolkit
46 tree grammars
47 trees
48 types
49 types of simulations
50 weighted context-free grammars
51 schema:name Minimizing Weighted Tree Grammars Using Simulation
52 schema:pagination 56-68
53 schema:productId N48fa0041e0f848a1b005575e73b10b74
54 Ndd5d16cd25ef4107a4334cca8c8b5325
55 schema:publisher N477422abbd024417b7bc708a0671c5b2
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018006839
57 https://doi.org/10.1007/978-3-642-14684-8_7
58 schema:sdDatePublished 2021-12-01T20:01
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N02b8c58973904d6484034f74ca3190b0
61 schema:url https://doi.org/10.1007/978-3-642-14684-8_7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N02b8c58973904d6484034f74ca3190b0 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N17634ab74be941e7b0555c80dd91f1a1 rdf:first N1cb7331ce74c45efb0b2200205d012e7
68 rdf:rest N97185267360c48529bc6338eabf28391
69 N1cb7331ce74c45efb0b2200205d012e7 schema:familyName Sakarovitch
70 schema:givenName Jacques
71 rdf:type schema:Person
72 N477422abbd024417b7bc708a0671c5b2 schema:name Springer Nature
73 rdf:type schema:Organisation
74 N48fa0041e0f848a1b005575e73b10b74 schema:name dimensions_id
75 schema:value pub.1018006839
76 rdf:type schema:PropertyValue
77 N831567eafd7c465383529840fac6f9aa schema:isbn 978-3-642-14683-1
78 978-3-642-14684-8
79 schema:name Finite-State Methods and Natural Language Processing
80 rdf:type schema:Book
81 N97185267360c48529bc6338eabf28391 rdf:first Na5adfcf8d92d4c3ebf874b3f6f816e1e
82 rdf:rest rdf:nil
83 N9b934b027b3d446da5ddd225960f159f rdf:first Na636fec9630f419ca26d79eaf378f927
84 rdf:rest N17634ab74be941e7b0555c80dd91f1a1
85 Na59ad4f9ab7342009389413b5764b572 rdf:first Ne74c8862ae7f4197b4c369c4155c6045
86 rdf:rest N9b934b027b3d446da5ddd225960f159f
87 Na5adfcf8d92d4c3ebf874b3f6f816e1e schema:familyName Watson
88 schema:givenName Bruce
89 rdf:type schema:Person
90 Na636fec9630f419ca26d79eaf378f927 schema:familyName Kornai
91 schema:givenName András
92 rdf:type schema:Person
93 Nacb94594facd48d996f4c3f19aab529e rdf:first sg:person.016645332751.01
94 rdf:rest rdf:nil
95 Ndd5d16cd25ef4107a4334cca8c8b5325 schema:name doi
96 schema:value 10.1007/978-3-642-14684-8_7
97 rdf:type schema:PropertyValue
98 Ne74c8862ae7f4197b4c369c4155c6045 schema:familyName Yli-Jyrä
99 schema:givenName Anssi
100 rdf:type schema:Person
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:person.016645332751.01 schema:affiliation grid-institutes:grid.410367.7
108 schema:familyName Maletti
109 schema:givenName Andreas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01
111 rdf:type schema:Person
112 grid-institutes:grid.410367.7 schema:alternateName Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
113 schema:name Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...