Minimizing Weighted Tree Grammars Using Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Andreas Maletti

ABSTRACT

Weighted tree grammars (for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization. More... »

PAGES

56-68

Book

TITLE

Finite-State Methods and Natural Language Processing

ISBN

978-3-642-14683-1
978-3-642-14684-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7

DOI

http://dx.doi.org/10.1007/978-3-642-14684-8_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018006839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya\u00a035, 43002, Tarragona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.410367.7", 
          "name": [
            "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya\u00a035, 43002, Tarragona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maletti", 
        "givenName": "Andreas", 
        "id": "sg:person.016645332751.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Weighted tree grammars\u00a0(for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization.", 
    "editor": [
      {
        "familyName": "Yli-Jyr\u00e4", 
        "givenName": "Anssi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kornai", 
        "givenName": "Andr\u00e1s", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakarovitch", 
        "givenName": "Jacques", 
        "type": "Person"
      }, 
      {
        "familyName": "Watson", 
        "givenName": "Bruce", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14684-8_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14683-1", 
        "978-3-642-14684-8"
      ], 
      "name": "Finite-State Methods and Natural Language Processing", 
      "type": "Book"
    }, 
    "keywords": [
      "parse trees", 
      "tree grammars", 
      "notion of simulation", 
      "context-free grammars", 
      "natural language", 
      "fast minimization", 
      "types of simulations", 
      "weighted context-free grammars", 
      "new notion", 
      "better reduction rate", 
      "grammar", 
      "bisimulation", 
      "semantics", 
      "trees", 
      "simulations", 
      "toolkit", 
      "language", 
      "sentences", 
      "commutative semirings", 
      "important tool", 
      "set", 
      "notion", 
      "WTG", 
      "tool", 
      "minimization procedure", 
      "strings", 
      "semirings", 
      "minimization", 
      "extension", 
      "one", 
      "types", 
      "size", 
      "procedure", 
      "reduction rate", 
      "rate", 
      "idempotents", 
      "generate trees", 
      "size of WTG", 
      "Weighted Tree Grammars"
    ], 
    "name": "Minimizing Weighted Tree Grammars Using Simulation", 
    "pagination": "56-68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018006839"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14684-8_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14684-8_7", 
      "https://app.dimensions.ai/details/publication/pub.1018006839"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_208.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14684-8_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14684-8_7'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14684-8_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7ad83586d60e413796d0c530d5f0ff7f
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Weighted tree grammars (for short: WTG) are an extension of weighted context-free grammars that generate trees instead of strings. They can be used in natural language parsing to directly generate the parse tree of a sentence or to encode the set of all parse trees of a sentence. Two types of simulations for WTG over idempotent, commutative semirings are introduced. They generalize the existing notions of simulation and bisimulation for WTG. Both simulations can be used to reduce the size of WTG while preserving the semantics, and are thus an important tool in toolkits. Since the new notions are more general than the existing ones, they yield the best reduction rates achievable by all minimization procedures that rely on simulation or bisimulation. However, the existing notions might allow faster minimization.
7 schema:editor Ne61c1f281f9f459eb58689f1b162a82c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc42bfddd291b4ad89c1923cf21d3dde7
12 schema:keywords WTG
13 Weighted Tree Grammars
14 better reduction rate
15 bisimulation
16 commutative semirings
17 context-free grammars
18 extension
19 fast minimization
20 generate trees
21 grammar
22 idempotents
23 important tool
24 language
25 minimization
26 minimization procedure
27 natural language
28 new notion
29 notion
30 notion of simulation
31 one
32 parse trees
33 procedure
34 rate
35 reduction rate
36 semantics
37 semirings
38 sentences
39 set
40 simulations
41 size
42 size of WTG
43 strings
44 tool
45 toolkit
46 tree grammars
47 trees
48 types
49 types of simulations
50 weighted context-free grammars
51 schema:name Minimizing Weighted Tree Grammars Using Simulation
52 schema:pagination 56-68
53 schema:productId N1cf2bb993f0b42909d61142087819de8
54 N203a5c64671d4b58b1a08dd663f6e5d5
55 schema:publisher Nce8fb71b11da4ce9a90c334135370366
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018006839
57 https://doi.org/10.1007/978-3-642-14684-8_7
58 schema:sdDatePublished 2022-01-01T19:12
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N8781537faca547a4928fb743d4874bf2
61 schema:url https://doi.org/10.1007/978-3-642-14684-8_7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N03f87e7605404b52a5c30d68e20ab313 schema:familyName Sakarovitch
66 schema:givenName Jacques
67 rdf:type schema:Person
68 N1cf2bb993f0b42909d61142087819de8 schema:name doi
69 schema:value 10.1007/978-3-642-14684-8_7
70 rdf:type schema:PropertyValue
71 N203a5c64671d4b58b1a08dd663f6e5d5 schema:name dimensions_id
72 schema:value pub.1018006839
73 rdf:type schema:PropertyValue
74 N643007b0b5fa4a3eb583753695a7400f rdf:first Nf23486459aa34a26b91f376a3b93c785
75 rdf:rest Nca927b60909b49cdb89623fcc88de17e
76 N6da486e26a63421f862ed45acdc3cf9d rdf:first N91f021f5936a42d48a7760aa475a221f
77 rdf:rest rdf:nil
78 N7ad83586d60e413796d0c530d5f0ff7f rdf:first sg:person.016645332751.01
79 rdf:rest rdf:nil
80 N85aa5ed8496949ed8031b114222440ef schema:familyName Yli-Jyrä
81 schema:givenName Anssi
82 rdf:type schema:Person
83 N8781537faca547a4928fb743d4874bf2 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N91f021f5936a42d48a7760aa475a221f schema:familyName Watson
86 schema:givenName Bruce
87 rdf:type schema:Person
88 Nc42bfddd291b4ad89c1923cf21d3dde7 schema:isbn 978-3-642-14683-1
89 978-3-642-14684-8
90 schema:name Finite-State Methods and Natural Language Processing
91 rdf:type schema:Book
92 Nca927b60909b49cdb89623fcc88de17e rdf:first N03f87e7605404b52a5c30d68e20ab313
93 rdf:rest N6da486e26a63421f862ed45acdc3cf9d
94 Nce8fb71b11da4ce9a90c334135370366 schema:name Springer Nature
95 rdf:type schema:Organisation
96 Ne61c1f281f9f459eb58689f1b162a82c rdf:first N85aa5ed8496949ed8031b114222440ef
97 rdf:rest N643007b0b5fa4a3eb583753695a7400f
98 Nf23486459aa34a26b91f376a3b93c785 schema:familyName Kornai
99 schema:givenName András
100 rdf:type schema:Person
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:person.016645332751.01 schema:affiliation grid-institutes:grid.410367.7
108 schema:familyName Maletti
109 schema:givenName Andreas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01
111 rdf:type schema:Person
112 grid-institutes:grid.410367.7 schema:alternateName Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
113 schema:name Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...