A Learning-Based Approach to Reactive Security View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Adam Barth , Benjamin I. P. Rubinstein , Mukund Sundararajan , John C. Mitchell , Dawn Song , Peter L. Bartlett

ABSTRACT

Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender’s strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker’s incentives and knowledge. More... »

PAGES

192-206

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14577-3_16

DOI

http://dx.doi.org/10.1007/978-3-642-14577-3_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027453285


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Division", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Division"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth", 
        "givenName": "Adam", 
        "id": "sg:person.07455524432.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455524432.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Division"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubinstein", 
        "givenName": "Benjamin I. P.", 
        "id": "sg:person.014377611465.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377611465.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google Inc., Mountain View, CA", 
          "id": "http://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google Inc., Mountain View, CA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sundararajan", 
        "givenName": "Mukund", 
        "id": "sg:person.010222560615.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222560615.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Stanford University", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Computer Science, Stanford University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "John C.", 
        "id": "sg:person.016213414603.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213414603.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Division"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Dawn", 
        "id": "sg:person.01143152610.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, UC Berkeley", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Division", 
            "Department of Statistics, UC Berkeley"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartlett", 
        "givenName": "Peter L.", 
        "id": "sg:person.014367747662.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367747662.33"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender\u2019s strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker\u2019s incentives and knowledge.", 
    "editor": [
      {
        "familyName": "Sion", 
        "givenName": "Radu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14577-3_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14576-6", 
        "978-3-642-14577-3"
      ], 
      "name": "Financial Cryptography and Data Security", 
      "type": "Book"
    }, 
    "keywords": [
      "proactive security", 
      "proactive defense", 
      "defense algorithm", 
      "attacker's incentives", 
      "reactive security", 
      "defender strategy", 
      "past attacks", 
      "security", 
      "security literature", 
      "game-theoretic model", 
      "competitive ratio", 
      "attacker", 
      "worst-case assumptions", 
      "complete knowledge", 
      "attacks", 
      "reactive strategies", 
      "algorithm", 
      "learning", 
      "common practice", 
      "information", 
      "knowledge", 
      "model", 
      "lack of information", 
      "defenders", 
      "strategies", 
      "defense", 
      "incentives", 
      "assumption", 
      "last attack", 
      "lack", 
      "conventional wisdom", 
      "practice", 
      "wisdom", 
      "literature", 
      "ratio", 
      "approach"
    ], 
    "name": "A Learning-Based Approach to Reactive Security", 
    "pagination": "192-206", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027453285"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14577-3_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14577-3_16", 
      "https://app.dimensions.ai/details/publication/pub.1027453285"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_145.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14577-3_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14577-3_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14577-3_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14577-3_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14577-3_16'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14577-3_16 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ncab82d94802b41ddae7a0199cd6f3694
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender’s strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker’s incentives and knowledge.
7 schema:editor N614671ce00c44604ba3ceae6b289bae7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N8dcfc9f0ab97470892df9375d7cc4a07
12 schema:keywords algorithm
13 approach
14 assumption
15 attacker
16 attacker's incentives
17 attacks
18 common practice
19 competitive ratio
20 complete knowledge
21 conventional wisdom
22 defender strategy
23 defenders
24 defense
25 defense algorithm
26 game-theoretic model
27 incentives
28 information
29 knowledge
30 lack
31 lack of information
32 last attack
33 learning
34 literature
35 model
36 past attacks
37 practice
38 proactive defense
39 proactive security
40 ratio
41 reactive security
42 reactive strategies
43 security
44 security literature
45 strategies
46 wisdom
47 worst-case assumptions
48 schema:name A Learning-Based Approach to Reactive Security
49 schema:pagination 192-206
50 schema:productId N249dac04fb1445fc8af3483d9f93e8d2
51 Ndff8a0c69d3146dd8cf42d94de68142d
52 schema:publisher N1d2b01f78ed848ff9d8c3afb6c89aad0
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027453285
54 https://doi.org/10.1007/978-3-642-14577-3_16
55 schema:sdDatePublished 2022-05-20T07:42
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfdb88ae2feeb4ec3bf5e70798754fd5a
58 schema:url https://doi.org/10.1007/978-3-642-14577-3_16
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N091998d14f744d6a80a03d9cb69235c0 rdf:first sg:person.016213414603.79
63 rdf:rest N6f7a15e59e6d4f508074408e10bc3329
64 N1d2b01f78ed848ff9d8c3afb6c89aad0 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N211cbde29b8149c9bca881266d90e7ff rdf:first sg:person.014367747662.33
67 rdf:rest rdf:nil
68 N249dac04fb1445fc8af3483d9f93e8d2 schema:name doi
69 schema:value 10.1007/978-3-642-14577-3_16
70 rdf:type schema:PropertyValue
71 N614671ce00c44604ba3ceae6b289bae7 rdf:first N6ec2273a80984e0eb776132643b5f513
72 rdf:rest rdf:nil
73 N6cf600a1234143aaaccda51dea8ddf28 rdf:first sg:person.014377611465.47
74 rdf:rest N9a0d5ff63f614fa385d4aba7423397c4
75 N6ec2273a80984e0eb776132643b5f513 schema:familyName Sion
76 schema:givenName Radu
77 rdf:type schema:Person
78 N6f7a15e59e6d4f508074408e10bc3329 rdf:first sg:person.01143152610.86
79 rdf:rest N211cbde29b8149c9bca881266d90e7ff
80 N8dcfc9f0ab97470892df9375d7cc4a07 schema:isbn 978-3-642-14576-6
81 978-3-642-14577-3
82 schema:name Financial Cryptography and Data Security
83 rdf:type schema:Book
84 N9a0d5ff63f614fa385d4aba7423397c4 rdf:first sg:person.010222560615.03
85 rdf:rest N091998d14f744d6a80a03d9cb69235c0
86 Ncab82d94802b41ddae7a0199cd6f3694 rdf:first sg:person.07455524432.87
87 rdf:rest N6cf600a1234143aaaccda51dea8ddf28
88 Ndff8a0c69d3146dd8cf42d94de68142d schema:name dimensions_id
89 schema:value pub.1027453285
90 rdf:type schema:PropertyValue
91 Nfdb88ae2feeb4ec3bf5e70798754fd5a schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
97 schema:name Data Format
98 rdf:type schema:DefinedTerm
99 sg:person.010222560615.03 schema:affiliation grid-institutes:grid.420451.6
100 schema:familyName Sundararajan
101 schema:givenName Mukund
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222560615.03
103 rdf:type schema:Person
104 sg:person.01143152610.86 schema:affiliation grid-institutes:None
105 schema:familyName Song
106 schema:givenName Dawn
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86
108 rdf:type schema:Person
109 sg:person.014367747662.33 schema:affiliation grid-institutes:None
110 schema:familyName Bartlett
111 schema:givenName Peter L.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367747662.33
113 rdf:type schema:Person
114 sg:person.014377611465.47 schema:affiliation grid-institutes:None
115 schema:familyName Rubinstein
116 schema:givenName Benjamin I. P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014377611465.47
118 rdf:type schema:Person
119 sg:person.016213414603.79 schema:affiliation grid-institutes:grid.168010.e
120 schema:familyName Mitchell
121 schema:givenName John C.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213414603.79
123 rdf:type schema:Person
124 sg:person.07455524432.87 schema:affiliation grid-institutes:None
125 schema:familyName Barth
126 schema:givenName Adam
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07455524432.87
128 rdf:type schema:Person
129 grid-institutes:None schema:alternateName Computer Science Division
130 Department of Statistics, UC Berkeley
131 schema:name Computer Science Division
132 Department of Statistics, UC Berkeley
133 rdf:type schema:Organization
134 grid-institutes:grid.168010.e schema:alternateName Department of Computer Science, Stanford University
135 schema:name Department of Computer Science, Stanford University
136 rdf:type schema:Organization
137 grid-institutes:grid.420451.6 schema:alternateName Google Inc., Mountain View, CA
138 schema:name Google Inc., Mountain View, CA
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...