Privacy-Preserving Queries over Relational Databases View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Femi Olumofin , Ian Goldberg

ABSTRACT

We explore how Private Information Retrieval (PIR) can help users keep their sensitive information from being leaked in an SQL query. We show how to retrieve data from a relational database with PIR by hiding sensitive constants contained in the predicates of a query. Experimental results and microbenchmarking tests show our approach incurs reasonable storage overhead for the added privacy benefit and performs between 7 and 480 times faster than previous work. More... »

PAGES

75-92

References to SciGraph publications

  • 2002-04-26. Symmetrically Private Information Retrieval in PROGRESS IN CRYPTOLOGY —INDOCRYPT 2000
  • 2007-07. Robust Information-Theoretic Private Information Retrieval in JOURNAL OF CRYPTOLOGY
  • 2002. Implementing I/O-efficient Data Structures Using TPIE in ALGORITHMS — ESA 2002
  • Book

    TITLE

    Privacy Enhancing Technologies

    ISBN

    978-3-642-14526-1
    978-3-642-14527-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-14527-8_5

    DOI

    http://dx.doi.org/10.1007/978-3-642-14527-8_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014072607


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olumofin", 
            "givenName": "Femi", 
            "id": "sg:person.012445210344.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012445210344.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goldberg", 
            "givenName": "Ian", 
            "id": "sg:person.012057510223.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012057510223.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-012088469-8.50064-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009674824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44495-5_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011475896", 
              "https://doi.org/10.1007/3-540-44495-5_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44495-5_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011475896", 
              "https://doi.org/10.1007/3-540-44495-5_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-007-0424-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013046961", 
              "https://doi.org/10.1007/s00145-007-0424-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1321440.1321532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029807756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/564691.564717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033627752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/301250.301312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036943634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/358549.358563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042225009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1455526.1455529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050532624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1102199.1102201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050654194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45749-6_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053307706", 
              "https://doi.org/10.1007/3-540-45749-6_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21236/ada465464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091751978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1995.492461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093241746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1997.646125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093344306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sp.2007.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094402381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/spdp.1995.530667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094899132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sp.2007.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095305527"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "We explore how Private Information Retrieval (PIR) can help users keep their sensitive information from being leaked in an SQL query. We show how to retrieve data from a relational database with PIR by hiding sensitive constants contained in the predicates of a query. Experimental results and microbenchmarking tests show our approach incurs reasonable storage overhead for the added privacy benefit and performs between 7 and 480 times faster than previous work.", 
        "editor": [
          {
            "familyName": "Atallah", 
            "givenName": "Mikhail J.", 
            "type": "Person"
          }, 
          {
            "familyName": "Hopper", 
            "givenName": "Nicholas J.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-14527-8_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-14526-1", 
            "978-3-642-14527-8"
          ], 
          "name": "Privacy Enhancing Technologies", 
          "type": "Book"
        }, 
        "name": "Privacy-Preserving Queries over Relational Databases", 
        "pagination": "75-92", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014072607"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-14527-8_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "430a3b3fc6625ed8e78add14ba9230e0d1f4e16f0e840521d61389271ebc2a93"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-14527-8_5", 
          "https://app.dimensions.ai/details/publication/pub.1014072607"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-14527-8_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14527-8_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14527-8_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14527-8_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14527-8_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-14527-8_5 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N377386fce940411cbaf3bbb8d4ffc62c
    4 schema:citation sg:pub.10.1007/3-540-44495-5_20
    5 sg:pub.10.1007/3-540-45749-6_12
    6 sg:pub.10.1007/s00145-007-0424-2
    7 https://doi.org/10.1016/b978-012088469-8.50064-4
    8 https://doi.org/10.1109/sfcs.1995.492461
    9 https://doi.org/10.1109/sfcs.1997.646125
    10 https://doi.org/10.1109/sp.2007.23
    11 https://doi.org/10.1109/sp.2007.29
    12 https://doi.org/10.1109/spdp.1995.530667
    13 https://doi.org/10.1145/1102199.1102201
    14 https://doi.org/10.1145/1321440.1321532
    15 https://doi.org/10.1145/1455526.1455529
    16 https://doi.org/10.1145/301250.301312
    17 https://doi.org/10.1145/358549.358563
    18 https://doi.org/10.1145/564691.564717
    19 https://doi.org/10.21236/ada465464
    20 schema:datePublished 2010
    21 schema:datePublishedReg 2010-01-01
    22 schema:description We explore how Private Information Retrieval (PIR) can help users keep their sensitive information from being leaked in an SQL query. We show how to retrieve data from a relational database with PIR by hiding sensitive constants contained in the predicates of a query. Experimental results and microbenchmarking tests show our approach incurs reasonable storage overhead for the added privacy benefit and performs between 7 and 480 times faster than previous work.
    23 schema:editor Na3af264b26fd4d69837dcfc00e6d51ce
    24 schema:genre chapter
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N493126dc7ed04754ac400575157df7dc
    28 schema:name Privacy-Preserving Queries over Relational Databases
    29 schema:pagination 75-92
    30 schema:productId N0ae22a58ea184796a7fc27af8c94b09c
    31 Nb4b0432b7ef24957b15f75a93d1ea257
    32 Nf3bba80fefda42b7affb2160540b1157
    33 schema:publisher N3bede22c0db44ffebc9a8e4fcbd2cf92
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014072607
    35 https://doi.org/10.1007/978-3-642-14527-8_5
    36 schema:sdDatePublished 2019-04-16T08:02
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Nfe6a87e439c04edfa5ecc84b093aeba2
    39 schema:url https://link.springer.com/10.1007%2F978-3-642-14527-8_5
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset chapters
    42 rdf:type schema:Chapter
    43 N0ae22a58ea184796a7fc27af8c94b09c schema:name readcube_id
    44 schema:value 430a3b3fc6625ed8e78add14ba9230e0d1f4e16f0e840521d61389271ebc2a93
    45 rdf:type schema:PropertyValue
    46 N377386fce940411cbaf3bbb8d4ffc62c rdf:first sg:person.012445210344.17
    47 rdf:rest N7534d2b7833d429db1fe8dc1639fdcaf
    48 N3bede22c0db44ffebc9a8e4fcbd2cf92 schema:location Berlin, Heidelberg
    49 schema:name Springer Berlin Heidelberg
    50 rdf:type schema:Organisation
    51 N493126dc7ed04754ac400575157df7dc schema:isbn 978-3-642-14526-1
    52 978-3-642-14527-8
    53 schema:name Privacy Enhancing Technologies
    54 rdf:type schema:Book
    55 N7534d2b7833d429db1fe8dc1639fdcaf rdf:first sg:person.012057510223.72
    56 rdf:rest rdf:nil
    57 N8113778de0384201acc5a59f66b3cd8e schema:familyName Atallah
    58 schema:givenName Mikhail J.
    59 rdf:type schema:Person
    60 Na3af264b26fd4d69837dcfc00e6d51ce rdf:first N8113778de0384201acc5a59f66b3cd8e
    61 rdf:rest Nebc79816cefa49a9ac58ba6d7562e47a
    62 Nb4b0432b7ef24957b15f75a93d1ea257 schema:name doi
    63 schema:value 10.1007/978-3-642-14527-8_5
    64 rdf:type schema:PropertyValue
    65 Nb62fba76740a4f4eab1e7428fcba0f39 schema:familyName Hopper
    66 schema:givenName Nicholas J.
    67 rdf:type schema:Person
    68 Nebc79816cefa49a9ac58ba6d7562e47a rdf:first Nb62fba76740a4f4eab1e7428fcba0f39
    69 rdf:rest rdf:nil
    70 Nf3bba80fefda42b7affb2160540b1157 schema:name dimensions_id
    71 schema:value pub.1014072607
    72 rdf:type schema:PropertyValue
    73 Nfe6a87e439c04edfa5ecc84b093aeba2 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information Systems
    80 rdf:type schema:DefinedTerm
    81 sg:person.012057510223.72 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    82 schema:familyName Goldberg
    83 schema:givenName Ian
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012057510223.72
    85 rdf:type schema:Person
    86 sg:person.012445210344.17 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    87 schema:familyName Olumofin
    88 schema:givenName Femi
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012445210344.17
    90 rdf:type schema:Person
    91 sg:pub.10.1007/3-540-44495-5_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011475896
    92 https://doi.org/10.1007/3-540-44495-5_20
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/3-540-45749-6_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053307706
    95 https://doi.org/10.1007/3-540-45749-6_12
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00145-007-0424-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013046961
    98 https://doi.org/10.1007/s00145-007-0424-2
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/b978-012088469-8.50064-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009674824
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/sfcs.1995.492461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093241746
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/sfcs.1997.646125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093344306
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/sp.2007.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094402381
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/sp.2007.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095305527
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1109/spdp.1995.530667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094899132
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1145/1102199.1102201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050654194
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1145/1321440.1321532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029807756
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1145/1455526.1455529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050532624
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1145/301250.301312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036943634
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1145/358549.358563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042225009
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1145/564691.564717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033627752
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.21236/ada465464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091751978
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    127 schema:name Cheriton School of Computer Science, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...