Input Products for Weighted Extended Top-Down Tree Transducers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Andreas Maletti

ABSTRACT

A weighted tree transformation is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \colon T_\Sigma \times T_\Delta \to A$\end{document} where TΣ and TΔ are the sets of trees over the ranked alphabets Σ and Δ, respectively, and A is the domain of a semiring. The input and output product of τ with tree series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi \colon T_\Sigma \to A$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi \colon T_\Delta \to A$\end{document} are the weighted tree transformations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi \triangleleft \tau$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \triangleright \psi$\end{document}, respectively, which are defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varphi \triangleleft \tau)(t, u) = \varphi(t) \cdot \tau(t, u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\tau \triangleright \psi)(t, u) = \tau(t, u) \cdot \psi(u)$\end{document} for every t ∈ TΣ and u ∈ TΔ. In this contribution, input and output products of weighted tree transformations computed by weighted extended top-down tree transducers (wxtt) with recognizable tree series are considered. The classical approach is presented and used to solve the simple cases. It is shown that input products can be computed in three successively more difficult scenarios: nondeleting wxtt, wxtt over idempotent semirings, and weighted top-down tree transducers over rings. More... »

PAGES

316-327

Book

TITLE

Developments in Language Theory

ISBN

978-3-642-14454-7
978-3-642-14455-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_29

DOI

http://dx.doi.org/10.1007/978-3-642-14455-4_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048714448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.410367.7", 
          "name": [
            "Departament de Filologies Rom\u00e0niques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maletti", 
        "givenName": "Andreas", 
        "id": "sg:person.016645332751.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "A weighted tree transformation is a function\u00a0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tau \\colon T_\\Sigma \\times T_\\Delta \\to A$\\end{document} where T\u03a3\u00a0and\u00a0T\u0394 are the sets of trees over the ranked alphabets \u03a3\u00a0and\u00a0\u0394, respectively, and A\u00a0is the domain of a semiring. The input and output product of\u00a0\u03c4 with tree series \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varphi \\colon T_\\Sigma \\to A$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\psi \\colon T_\\Delta \\to A$\\end{document} are the weighted tree transformations \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varphi \\triangleleft \\tau$\\end{document}\u00a0and\u00a0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\tau \\triangleright \\psi$\\end{document}, respectively, which are defined by \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(\\varphi \\triangleleft \\tau)(t, u) = \\varphi(t) \\cdot \\tau(t, u)$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$(\\tau \\triangleright \\psi)(t, u) = \\tau(t, u) \\cdot \\psi(u)$\\end{document} for every t\u2009\u2208\u2009T\u03a3 and u\u2009\u2208\u2009T\u0394. In this contribution, input and output products of weighted tree transformations computed by weighted extended top-down tree transducers\u00a0(wxtt) with recognizable tree series are considered. The classical approach is presented and used to solve the simple cases. It is shown that input products can be computed in three successively more difficult scenarios: nondeleting wxtt, wxtt over idempotent semirings, and weighted top-down tree transducers over rings.", 
    "editor": [
      {
        "familyName": "Gao", 
        "givenName": "Yuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Hanlin", 
        "type": "Person"
      }, 
      {
        "familyName": "Seki", 
        "givenName": "Shinnosuke", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Sheng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14455-4_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14454-7", 
        "978-3-642-14455-4"
      ], 
      "name": "Developments in Language Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "set of trees", 
      "trees", 
      "transducer", 
      "domain", 
      "products", 
      "tree series", 
      "transformation", 
      "function", 
      "input products", 
      "contribution", 
      "set", 
      "classical approach", 
      "input", 
      "series", 
      "tree transformations", 
      "ring", 
      "approach", 
      "scenarios", 
      "tree transducers", 
      "cases", 
      "simple case", 
      "output products", 
      "difficult scenarios", 
      "recognizable tree series", 
      "alphabet \u03a3", 
      "semirings", 
      "idempotent semirings", 
      "weighted tree transformation", 
      "T\u03a3", 
      "T\u0394S", 
      "nondeleting wxtt", 
      "wxtt", 
      "Weighted Extended Top-Down Tree Transducers", 
      "Extended Top-Down Tree Transducers", 
      "Top-Down Tree Transducers"
    ], 
    "name": "Input Products for Weighted Extended Top-Down Tree Transducers", 
    "pagination": "316-327", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048714448"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14455-4_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14455-4_29", 
      "https://app.dimensions.ai/details/publication/pub.1048714448"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_320.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14455-4_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_29'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14455-4_29 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nc77053ec85ce48769be04e0f21a4b30a
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description A weighted tree transformation is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \colon T_\Sigma \times T_\Delta \to A$\end{document} where TΣ and TΔ are the sets of trees over the ranked alphabets Σ and Δ, respectively, and A is the domain of a semiring. The input and output product of τ with tree series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi \colon T_\Sigma \to A$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi \colon T_\Delta \to A$\end{document} are the weighted tree transformations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi \triangleleft \tau$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau \triangleright \psi$\end{document}, respectively, which are defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\varphi \triangleleft \tau)(t, u) = \varphi(t) \cdot \tau(t, u)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\tau \triangleright \psi)(t, u) = \tau(t, u) \cdot \psi(u)$\end{document} for every t ∈ TΣ and u ∈ TΔ. In this contribution, input and output products of weighted tree transformations computed by weighted extended top-down tree transducers (wxtt) with recognizable tree series are considered. The classical approach is presented and used to solve the simple cases. It is shown that input products can be computed in three successively more difficult scenarios: nondeleting wxtt, wxtt over idempotent semirings, and weighted top-down tree transducers over rings.
7 schema:editor N175c024744b044b395f0678f288892d3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3527778dba6443cf95ab4e135403d5be
12 schema:keywords Extended Top-Down Tree Transducers
13 Top-Down Tree Transducers
14 TΔS
15
16 Weighted Extended Top-Down Tree Transducers
17 alphabet Σ
18 approach
19 cases
20 classical approach
21 contribution
22 difficult scenarios
23 domain
24 function
25 idempotent semirings
26 input
27 input products
28 nondeleting wxtt
29 output products
30 products
31 recognizable tree series
32 ring
33 scenarios
34 semirings
35 series
36 set
37 set of trees
38 simple case
39 transducer
40 transformation
41 tree series
42 tree transducers
43 tree transformations
44 trees
45 weighted tree transformation
46 wxtt
47 schema:name Input Products for Weighted Extended Top-Down Tree Transducers
48 schema:pagination 316-327
49 schema:productId N3b10ea587e3e41a79659c4d916769f04
50 Nb46c5ffdc4d74bf6b83d6963a961409b
51 schema:publisher Nf1326058a73a461a9b33f114b679bd6d
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048714448
53 https://doi.org/10.1007/978-3-642-14455-4_29
54 schema:sdDatePublished 2021-11-01T18:55
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N9c1ba064efe04b46858181672439bc59
57 schema:url https://doi.org/10.1007/978-3-642-14455-4_29
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N175c024744b044b395f0678f288892d3 rdf:first N70c50fe236d547b4b5c5d599607a8c05
62 rdf:rest Nc4219d26bd8e4b5cbca33de176757579
63 N25a7171c409e4acea9bba1f51b8ee7fc schema:familyName Lu
64 schema:givenName Hanlin
65 rdf:type schema:Person
66 N333b1ba06fb34cab8ac008053cc7b2a5 schema:familyName Yu
67 schema:givenName Sheng
68 rdf:type schema:Person
69 N3527778dba6443cf95ab4e135403d5be schema:isbn 978-3-642-14454-7
70 978-3-642-14455-4
71 schema:name Developments in Language Theory
72 rdf:type schema:Book
73 N3b10ea587e3e41a79659c4d916769f04 schema:name doi
74 schema:value 10.1007/978-3-642-14455-4_29
75 rdf:type schema:PropertyValue
76 N588d93db96d74ce4a869457c19e221e9 schema:familyName Seki
77 schema:givenName Shinnosuke
78 rdf:type schema:Person
79 N70c50fe236d547b4b5c5d599607a8c05 schema:familyName Gao
80 schema:givenName Yuan
81 rdf:type schema:Person
82 N9c1ba064efe04b46858181672439bc59 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nb46c5ffdc4d74bf6b83d6963a961409b schema:name dimensions_id
85 schema:value pub.1048714448
86 rdf:type schema:PropertyValue
87 Nc4219d26bd8e4b5cbca33de176757579 rdf:first N25a7171c409e4acea9bba1f51b8ee7fc
88 rdf:rest Nec00db15a8af458a8ef0655d8da67884
89 Nc77053ec85ce48769be04e0f21a4b30a rdf:first sg:person.016645332751.01
90 rdf:rest rdf:nil
91 Nec00db15a8af458a8ef0655d8da67884 rdf:first N588d93db96d74ce4a869457c19e221e9
92 rdf:rest Nf9bffcdeb6c4436dba7ffbe95d367fd1
93 Nf1326058a73a461a9b33f114b679bd6d schema:name Springer Nature
94 rdf:type schema:Organisation
95 Nf9bffcdeb6c4436dba7ffbe95d367fd1 rdf:first N333b1ba06fb34cab8ac008053cc7b2a5
96 rdf:rest rdf:nil
97 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
98 schema:name Medical and Health Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
101 schema:name Neurosciences
102 rdf:type schema:DefinedTerm
103 sg:person.016645332751.01 schema:affiliation grid-institutes:grid.410367.7
104 schema:familyName Maletti
105 schema:givenName Andreas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645332751.01
107 rdf:type schema:Person
108 grid-institutes:grid.410367.7 schema:alternateName Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
109 schema:name Departament de Filologies Romàniques, Universitat Rovira i Virgili, Avinguda de Catalunya 35, 43002, Tarragona, Spain
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...