On Language Equations XXK = XXL and XM = N over a Unary Alphabet View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Tommi Lehtinen , Alexander Okhotin

ABSTRACT

It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK = XXL and XM = N, where K, L, M, N ⊆ a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers. More... »

PAGES

291-302

Book

TITLE

Developments in Language Theory

ISBN

978-3-642-14454-7
978-3-642-14455-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27

DOI

http://dx.doi.org/10.1007/978-3-642-14455-4_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036694593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Linguistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Turku Centre for Computer Science", 
          "id": "http://www.grid.ac/institutes/grid.470079.d", 
          "name": [
            "Department of Mathematics, University of Turku, Finland", 
            "Turku Centre for Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehtinen", 
        "givenName": "Tommi", 
        "id": "sg:person.016174074662.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174074662.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Finland", 
          "id": "http://www.grid.ac/institutes/grid.15098.35", 
          "name": [
            "Department of Mathematics, University of Turku, Finland", 
            "Academy of Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okhotin", 
        "givenName": "Alexander", 
        "id": "sg:person.012144356031.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK\u2009=\u2009XXL and XM\u2009=\u2009N, where K, L, M, N\u2009\u2286\u2009a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers.", 
    "editor": [
      {
        "familyName": "Gao", 
        "givenName": "Yuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Hanlin", 
        "type": "Person"
      }, 
      {
        "familyName": "Seki", 
        "givenName": "Shinnosuke", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Sheng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14455-4_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14454-7", 
        "978-3-642-14455-4"
      ], 
      "name": "Developments in Language Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "terms of equations", 
      "set of numbers", 
      "unique solution", 
      "recursive sets", 
      "simple form", 
      "computational universality", 
      "language equations", 
      "equations", 
      "unary alphabet", 
      "XM", 
      "set", 
      "system", 
      "alphabet", 
      "XXL", 
      "universality", 
      "solution", 
      "proof", 
      "form", 
      "terms", 
      "constants", 
      "number"
    ], 
    "name": "On Language Equations XXK = XXL and XM = N over a Unary Alphabet", 
    "pagination": "291-302", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036694593"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14455-4_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14455-4_27", 
      "https://app.dimensions.ai/details/publication/pub.1036694593"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_401.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14455-4_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      47 URIs      40 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14455-4_27 schema:about anzsrc-for:20
2 anzsrc-for:2004
3 schema:author Nc34faf36c73248c5b2d1c5e4d8d68164
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK = XXL and XM = N, where K, L, M, N ⊆ a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers.
7 schema:editor Nfb5a270541114d77baac58969b56e760
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N94205a9984fa4066b3f7e4b66ddeb8a4
12 schema:keywords XM
13 XXL
14 alphabet
15 computational universality
16 constants
17 equations
18 form
19 language equations
20 number
21 proof
22 recursive sets
23 set
24 set of numbers
25 simple form
26 solution
27 system
28 terms
29 terms of equations
30 unary alphabet
31 unique solution
32 universality
33 schema:name On Language Equations XXK = XXL and XM = N over a Unary Alphabet
34 schema:pagination 291-302
35 schema:productId N97273f18f6a24bd5bd28a26c84fdd487
36 Nb689fd33538f4eeb95e55a5ba542855c
37 schema:publisher N4a1bb71ab00649eb9c11eb3f2602d508
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036694593
39 https://doi.org/10.1007/978-3-642-14455-4_27
40 schema:sdDatePublished 2022-06-01T22:34
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N344c597ae8c84bcfae8a025e984401b9
43 schema:url https://doi.org/10.1007/978-3-642-14455-4_27
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N0f7e046d06184db48d5369773d4dde6f rdf:first Nd3ddf648bdfe48e9aad6d3dfbada16ba
48 rdf:rest Nb2e50cfdaf0746a79c9438c422f7e46c
49 N344c597ae8c84bcfae8a025e984401b9 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N4553ee94a4f741f69b3f5b41c6be324d schema:familyName Gao
52 schema:givenName Yuan
53 rdf:type schema:Person
54 N4a1bb71ab00649eb9c11eb3f2602d508 schema:name Springer Nature
55 rdf:type schema:Organisation
56 N52bc2eae269c432baa7c2e9d251e79e3 rdf:first sg:person.012144356031.48
57 rdf:rest rdf:nil
58 N729e3511ee964315979f2fda5c0ea7fa rdf:first N9735851fad594b77bc55cc41e5780f02
59 rdf:rest rdf:nil
60 N94205a9984fa4066b3f7e4b66ddeb8a4 schema:isbn 978-3-642-14454-7
61 978-3-642-14455-4
62 schema:name Developments in Language Theory
63 rdf:type schema:Book
64 N97273f18f6a24bd5bd28a26c84fdd487 schema:name doi
65 schema:value 10.1007/978-3-642-14455-4_27
66 rdf:type schema:PropertyValue
67 N9735851fad594b77bc55cc41e5780f02 schema:familyName Yu
68 schema:givenName Sheng
69 rdf:type schema:Person
70 Nb2e50cfdaf0746a79c9438c422f7e46c rdf:first Nb48073a0fc014286b42665b2f8bfc2af
71 rdf:rest N729e3511ee964315979f2fda5c0ea7fa
72 Nb48073a0fc014286b42665b2f8bfc2af schema:familyName Seki
73 schema:givenName Shinnosuke
74 rdf:type schema:Person
75 Nb689fd33538f4eeb95e55a5ba542855c schema:name dimensions_id
76 schema:value pub.1036694593
77 rdf:type schema:PropertyValue
78 Nc34faf36c73248c5b2d1c5e4d8d68164 rdf:first sg:person.016174074662.46
79 rdf:rest N52bc2eae269c432baa7c2e9d251e79e3
80 Nd3ddf648bdfe48e9aad6d3dfbada16ba schema:familyName Lu
81 schema:givenName Hanlin
82 rdf:type schema:Person
83 Nfb5a270541114d77baac58969b56e760 rdf:first N4553ee94a4f741f69b3f5b41c6be324d
84 rdf:rest N0f7e046d06184db48d5369773d4dde6f
85 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
86 schema:name Language, Communication and Culture
87 rdf:type schema:DefinedTerm
88 anzsrc-for:2004 schema:inDefinedTermSet anzsrc-for:
89 schema:name Linguistics
90 rdf:type schema:DefinedTerm
91 sg:person.012144356031.48 schema:affiliation grid-institutes:grid.15098.35
92 schema:familyName Okhotin
93 schema:givenName Alexander
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48
95 rdf:type schema:Person
96 sg:person.016174074662.46 schema:affiliation grid-institutes:grid.470079.d
97 schema:familyName Lehtinen
98 schema:givenName Tommi
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174074662.46
100 rdf:type schema:Person
101 grid-institutes:grid.15098.35 schema:alternateName Academy of Finland
102 schema:name Academy of Finland
103 Department of Mathematics, University of Turku, Finland
104 rdf:type schema:Organization
105 grid-institutes:grid.470079.d schema:alternateName Turku Centre for Computer Science
106 schema:name Department of Mathematics, University of Turku, Finland
107 Turku Centre for Computer Science
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...