On Language Equations XXK = XXL and XM = N over a Unary Alphabet View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Tommi Lehtinen , Alexander Okhotin

ABSTRACT

It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK = XXL and XM = N, where K, L, M, N ⊆ a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers. More... »

PAGES

291-302

Book

TITLE

Developments in Language Theory

ISBN

978-3-642-14454-7
978-3-642-14455-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27

DOI

http://dx.doi.org/10.1007/978-3-642-14455-4_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036694593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Linguistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Turku Centre for Computer Science", 
          "id": "http://www.grid.ac/institutes/grid.470079.d", 
          "name": [
            "Department of Mathematics, University of Turku, Finland", 
            "Turku Centre for Computer Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehtinen", 
        "givenName": "Tommi", 
        "id": "sg:person.016174074662.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174074662.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Finland", 
          "id": "http://www.grid.ac/institutes/grid.15098.35", 
          "name": [
            "Department of Mathematics, University of Turku, Finland", 
            "Academy of Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okhotin", 
        "givenName": "Alexander", 
        "id": "sg:person.012144356031.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK\u2009=\u2009XXL and XM\u2009=\u2009N, where K, L, M, N\u2009\u2286\u2009a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers.", 
    "editor": [
      {
        "familyName": "Gao", 
        "givenName": "Yuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Lu", 
        "givenName": "Hanlin", 
        "type": "Person"
      }, 
      {
        "familyName": "Seki", 
        "givenName": "Shinnosuke", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Sheng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-14455-4_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-14454-7", 
        "978-3-642-14455-4"
      ], 
      "name": "Developments in Language Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "terms of equations", 
      "set of numbers", 
      "unique solution", 
      "recursive sets", 
      "simple form", 
      "computational universality", 
      "language equations", 
      "equations", 
      "unary alphabet", 
      "XM", 
      "set", 
      "system", 
      "alphabet", 
      "XXL", 
      "universality", 
      "solution", 
      "proof", 
      "form", 
      "terms", 
      "constants", 
      "number"
    ], 
    "name": "On Language Equations XXK = XXL and XM = N over a Unary Alphabet", 
    "pagination": "291-302", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036694593"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-14455-4_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-14455-4_27", 
      "https://app.dimensions.ai/details/publication/pub.1036694593"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_401.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-14455-4_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      47 URIs      40 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-14455-4_27 schema:about anzsrc-for:20
2 anzsrc-for:2004
3 schema:author N48266eedc16f40bd9950178566fb8265
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK = XXL and XM = N, where K, L, M, N ⊆ a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers.
7 schema:editor N509533a02c49464ca74a854491ff5e27
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N661d025293f440339bf09ad56e5c5964
12 schema:keywords XM
13 XXL
14 alphabet
15 computational universality
16 constants
17 equations
18 form
19 language equations
20 number
21 proof
22 recursive sets
23 set
24 set of numbers
25 simple form
26 solution
27 system
28 terms
29 terms of equations
30 unary alphabet
31 unique solution
32 universality
33 schema:name On Language Equations XXK = XXL and XM = N over a Unary Alphabet
34 schema:pagination 291-302
35 schema:productId N3741a14dd1ff477c9785ce5534306737
36 Nf1283512dd2a482ab5c6c76c7f1ba189
37 schema:publisher N39a7114bedee4446af82bac82fd3170c
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036694593
39 https://doi.org/10.1007/978-3-642-14455-4_27
40 schema:sdDatePublished 2022-06-01T22:34
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N14864ddd67984dbfa19399de65a7e20b
43 schema:url https://doi.org/10.1007/978-3-642-14455-4_27
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N0eff760ada284ac3bec1d65ef29f6acd schema:familyName Gao
48 schema:givenName Yuan
49 rdf:type schema:Person
50 N14864ddd67984dbfa19399de65a7e20b schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N1c876a50985f407fb7879bff88650f7d rdf:first sg:person.012144356031.48
53 rdf:rest rdf:nil
54 N359852830e664d9da41895f93ee88517 schema:familyName Seki
55 schema:givenName Shinnosuke
56 rdf:type schema:Person
57 N3741a14dd1ff477c9785ce5534306737 schema:name dimensions_id
58 schema:value pub.1036694593
59 rdf:type schema:PropertyValue
60 N39a7114bedee4446af82bac82fd3170c schema:name Springer Nature
61 rdf:type schema:Organisation
62 N48266eedc16f40bd9950178566fb8265 rdf:first sg:person.016174074662.46
63 rdf:rest N1c876a50985f407fb7879bff88650f7d
64 N500979966074413dafeae027dc0a6880 rdf:first N359852830e664d9da41895f93ee88517
65 rdf:rest N72859dabf9dc4d3fbe45f733762a11c5
66 N509533a02c49464ca74a854491ff5e27 rdf:first N0eff760ada284ac3bec1d65ef29f6acd
67 rdf:rest N8930c94990124be28b9efaa35d45cfd9
68 N661d025293f440339bf09ad56e5c5964 schema:isbn 978-3-642-14454-7
69 978-3-642-14455-4
70 schema:name Developments in Language Theory
71 rdf:type schema:Book
72 N72859dabf9dc4d3fbe45f733762a11c5 rdf:first Naf5259411099404ea586aa0dfba8d62f
73 rdf:rest rdf:nil
74 N8930c94990124be28b9efaa35d45cfd9 rdf:first Na97efc24f45042b584de674f1de30231
75 rdf:rest N500979966074413dafeae027dc0a6880
76 Na97efc24f45042b584de674f1de30231 schema:familyName Lu
77 schema:givenName Hanlin
78 rdf:type schema:Person
79 Naf5259411099404ea586aa0dfba8d62f schema:familyName Yu
80 schema:givenName Sheng
81 rdf:type schema:Person
82 Nf1283512dd2a482ab5c6c76c7f1ba189 schema:name doi
83 schema:value 10.1007/978-3-642-14455-4_27
84 rdf:type schema:PropertyValue
85 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
86 schema:name Language, Communication and Culture
87 rdf:type schema:DefinedTerm
88 anzsrc-for:2004 schema:inDefinedTermSet anzsrc-for:
89 schema:name Linguistics
90 rdf:type schema:DefinedTerm
91 sg:person.012144356031.48 schema:affiliation grid-institutes:grid.15098.35
92 schema:familyName Okhotin
93 schema:givenName Alexander
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48
95 rdf:type schema:Person
96 sg:person.016174074662.46 schema:affiliation grid-institutes:grid.470079.d
97 schema:familyName Lehtinen
98 schema:givenName Tommi
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174074662.46
100 rdf:type schema:Person
101 grid-institutes:grid.15098.35 schema:alternateName Academy of Finland
102 schema:name Academy of Finland
103 Department of Mathematics, University of Turku, Finland
104 rdf:type schema:Organization
105 grid-institutes:grid.470079.d schema:alternateName Turku Centre for Computer Science
106 schema:name Department of Mathematics, University of Turku, Finland
107 Turku Centre for Computer Science
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...