Ontology type: schema:Chapter
2010
AUTHORSTommi Lehtinen , Alexander Okhotin
ABSTRACTIt is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK = XXL and XM = N, where K, L, M, N ⊆ a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers. More... »
PAGES291-302
Developments in Language Theory
ISBN
978-3-642-14454-7
978-3-642-14455-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27
DOIhttp://dx.doi.org/10.1007/978-3-642-14455-4_27
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036694593
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Linguistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Turku Centre for Computer Science",
"id": "http://www.grid.ac/institutes/grid.470079.d",
"name": [
"Department of Mathematics, University of Turku, Finland",
"Turku Centre for Computer Science"
],
"type": "Organization"
},
"familyName": "Lehtinen",
"givenName": "Tommi",
"id": "sg:person.016174074662.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174074662.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Academy of Finland",
"id": "http://www.grid.ac/institutes/grid.15098.35",
"name": [
"Department of Mathematics, University of Turku, Finland",
"Academy of Finland"
],
"type": "Organization"
},
"familyName": "Okhotin",
"givenName": "Alexander",
"id": "sg:person.012144356031.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "It is shown that the recently discovered computational universality in systems of language equations over a unary alphabet occurs already in systems of the simplest form, with one unknown X and two equations XXK\u2009=\u2009XXL and XM\u2009=\u2009N, where K, L, M, N\u2009\u2286\u2009a* are four regular constants. Every recursive (r.e., co-r.e.) set can be encoded in a unique (least, greatest) solution of a system of such a form. The proofs are carried out in terms of equations over sets of numbers.",
"editor": [
{
"familyName": "Gao",
"givenName": "Yuan",
"type": "Person"
},
{
"familyName": "Lu",
"givenName": "Hanlin",
"type": "Person"
},
{
"familyName": "Seki",
"givenName": "Shinnosuke",
"type": "Person"
},
{
"familyName": "Yu",
"givenName": "Sheng",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-14455-4_27",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-14454-7",
"978-3-642-14455-4"
],
"name": "Developments in Language Theory",
"type": "Book"
},
"keywords": [
"terms of equations",
"set of numbers",
"unique solution",
"recursive sets",
"simple form",
"computational universality",
"language equations",
"equations",
"unary alphabet",
"XM",
"set",
"system",
"alphabet",
"XXL",
"universality",
"solution",
"proof",
"form",
"terms",
"constants",
"number"
],
"name": "On Language Equations XXK = XXL and XM = N over a Unary Alphabet",
"pagination": "291-302",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036694593"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-14455-4_27"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-14455-4_27",
"https://app.dimensions.ai/details/publication/pub.1036694593"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_401.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-14455-4_27"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14455-4_27'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
23 PREDICATES
47 URIs
40 LITERALS
7 BLANK NODES