Ontology type: schema:Chapter Open Access: True
2010
AUTHORSAmitava Bhattacharya , Bhaskar DasGupta , Dhruv Mubayi , György Turán
ABSTRACTThe minimization problem for Horn formulas is to find a Horn formula equivalent to a given Horn formula, using a minimum number of clauses. A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\log^{1 - \epsilon}(n)}$\end{document}-inapproximability result is proven, which is the first inapproximability result for this problem. We also consider several other versions of Horn minimization. The more general version which allows for the introduction of new variables is known to be too difficult as its equivalence problem is co-NP-complete. Therefore, we propose a variant called Steiner-minimization, which allows for the introduction of new variables in a restricted manner. Steiner-minimization of Horn formulas is shown to be MAX-SNP-hard. In the positive direction, a o(n), namely, O(nloglogn/(logn)1/4)-approximation algorithm is given for the Steiner-minimization of definite Horn formulas. The algorithm is based on a new result in algorithmic extremal graph theory, on partitioning bipartite graphs into complete bipartite graphs, which may be of independent interest. Inapproximability results and approximation algorithms are also given for restricted versions of Horn minimization, where only clauses present in the original formula may be used. More... »
PAGES438-450
Automata, Languages and Programming
ISBN
978-3-642-14164-5
978-3-642-14165-2
http://scigraph.springernature.com/pub.10.1007/978-3-642-14165-2_38
DOIhttp://dx.doi.org/10.1007/978-3-642-14165-2_38
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005944805
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mathematics, Tata Institute of Fundamental Research, Colaba, 400 005, Mumbai, India",
"id": "http://www.grid.ac/institutes/grid.22401.35",
"name": [
"School of Mathematics, Tata Institute of Fundamental Research, Colaba, 400 005, Mumbai, India"
],
"type": "Organization"
},
"familyName": "Bhattacharya",
"givenName": "Amitava",
"id": "sg:person.013604232267.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604232267.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL",
"id": "http://www.grid.ac/institutes/grid.185648.6",
"name": [
"Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL"
],
"type": "Organization"
},
"familyName": "DasGupta",
"givenName": "Bhaskar",
"id": "sg:person.0763403270.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL",
"id": "http://www.grid.ac/institutes/grid.185648.6",
"name": [
"Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL"
],
"type": "Organization"
},
"familyName": "Mubayi",
"givenName": "Dhruv",
"id": "sg:person.013521032647.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521032647.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Research Group on Artificial Intelligence, University of Szeged, Hungary",
"id": "http://www.grid.ac/institutes/grid.512679.e",
"name": [
"Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL",
"Research Group on Artificial Intelligence, University of Szeged, Hungary"
],
"type": "Organization"
},
"familyName": "Tur\u00e1n",
"givenName": "Gy\u00f6rgy",
"id": "sg:person.012465675663.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012465675663.27"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "The minimization problem for Horn formulas is to find a Horn formula equivalent to a given Horn formula, using a minimum number of clauses. A \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$2^{\\log^{1 - \\epsilon}(n)}$\\end{document}-inapproximability result is proven, which is the first inapproximability result for this problem. We also consider several other versions of Horn minimization. The more general version which allows for the introduction of new variables is known to be too difficult as its equivalence problem is co-NP-complete. Therefore, we propose a variant called Steiner-minimization, which allows for the introduction of new variables in a restricted manner. Steiner-minimization of Horn formulas is shown to be MAX-SNP-hard. In the positive direction, a o(n), namely, O(nloglogn/(logn)1/4)-approximation algorithm is given for the Steiner-minimization of definite Horn formulas. The algorithm is based on a new result in algorithmic extremal graph theory, on partitioning bipartite graphs into complete bipartite graphs, which may be of independent interest. Inapproximability results and approximation algorithms are also given for restricted versions of Horn minimization, where only clauses present in the original formula may be used.",
"editor": [
{
"familyName": "Abramsky",
"givenName": "Samson",
"type": "Person"
},
{
"familyName": "Gavoille",
"givenName": "Cyril",
"type": "Person"
},
{
"familyName": "Kirchner",
"givenName": "Claude",
"type": "Person"
},
{
"familyName": "Meyer auf der Heide",
"givenName": "Friedhelm",
"type": "Person"
},
{
"familyName": "Spirakis",
"givenName": "Paul G.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-14165-2_38",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-14164-5",
"978-3-642-14165-2"
],
"name": "Automata, Languages and Programming",
"type": "Book"
},
"keywords": [
"approximation algorithm",
"inapproximability results",
"extremal graph theory",
"bipartite graphs",
"Horn minimization",
"new variables",
"complete bipartite graph",
"graph theory",
"minimization problem",
"independent interest",
"general version",
"new results",
"Horn formulas",
"equivalence problem",
"MAX SNP",
"minimum number",
"minimization",
"formula",
"graph",
"algorithm",
"problem",
"original formula",
"inapproximability",
"first inapproximability",
"version",
"theory",
"variables",
"results",
"direction",
"number",
"introduction",
"interest",
"positive direction",
"variants",
"manner",
"clauses"
],
"name": "On Approximate Horn Formula Minimization",
"pagination": "438-450",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005944805"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-14165-2_38"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-14165-2_38",
"https://app.dimensions.ai/details/publication/pub.1005944805"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_17.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-14165-2_38"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14165-2_38'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14165-2_38'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14165-2_38'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-14165-2_38'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
23 PREDICATES
62 URIs
55 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-14165-2_38 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N25c1539fb0db465990fdf3e3aab2e5ef |
4 | ″ | schema:datePublished | 2010 |
5 | ″ | schema:datePublishedReg | 2010-01-01 |
6 | ″ | schema:description | The minimization problem for Horn formulas is to find a Horn formula equivalent to a given Horn formula, using a minimum number of clauses. A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\log^{1 - \epsilon}(n)}$\end{document}-inapproximability result is proven, which is the first inapproximability result for this problem. We also consider several other versions of Horn minimization. The more general version which allows for the introduction of new variables is known to be too difficult as its equivalence problem is co-NP-complete. Therefore, we propose a variant called Steiner-minimization, which allows for the introduction of new variables in a restricted manner. Steiner-minimization of Horn formulas is shown to be MAX-SNP-hard. In the positive direction, a o(n), namely, O(nloglogn/(logn)1/4)-approximation algorithm is given for the Steiner-minimization of definite Horn formulas. The algorithm is based on a new result in algorithmic extremal graph theory, on partitioning bipartite graphs into complete bipartite graphs, which may be of independent interest. Inapproximability results and approximation algorithms are also given for restricted versions of Horn minimization, where only clauses present in the original formula may be used. |
7 | ″ | schema:editor | Nf41ca12fccb24409b4b9de14d8055e7d |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N46485c038ab84d13ae0fb7ee9856778c |
12 | ″ | schema:keywords | Horn formulas |
13 | ″ | ″ | Horn minimization |
14 | ″ | ″ | MAX SNP |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | approximation algorithm |
17 | ″ | ″ | bipartite graphs |
18 | ″ | ″ | clauses |
19 | ″ | ″ | complete bipartite graph |
20 | ″ | ″ | direction |
21 | ″ | ″ | equivalence problem |
22 | ″ | ″ | extremal graph theory |
23 | ″ | ″ | first inapproximability |
24 | ″ | ″ | formula |
25 | ″ | ″ | general version |
26 | ″ | ″ | graph |
27 | ″ | ″ | graph theory |
28 | ″ | ″ | inapproximability |
29 | ″ | ″ | inapproximability results |
30 | ″ | ″ | independent interest |
31 | ″ | ″ | interest |
32 | ″ | ″ | introduction |
33 | ″ | ″ | manner |
34 | ″ | ″ | minimization |
35 | ″ | ″ | minimization problem |
36 | ″ | ″ | minimum number |
37 | ″ | ″ | new results |
38 | ″ | ″ | new variables |
39 | ″ | ″ | number |
40 | ″ | ″ | original formula |
41 | ″ | ″ | positive direction |
42 | ″ | ″ | problem |
43 | ″ | ″ | results |
44 | ″ | ″ | theory |
45 | ″ | ″ | variables |
46 | ″ | ″ | variants |
47 | ″ | ″ | version |
48 | ″ | schema:name | On Approximate Horn Formula Minimization |
49 | ″ | schema:pagination | 438-450 |
50 | ″ | schema:productId | N3de9968c67224599ba3d0cd4970e4059 |
51 | ″ | ″ | N6a3ca6370cc04cb5a99709ec1698baf3 |
52 | ″ | schema:publisher | N9c88062c01e64f68be1cdbfe3c689f92 |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005944805 |
54 | ″ | ″ | https://doi.org/10.1007/978-3-642-14165-2_38 |
55 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | N1c35027fe2d44df9af978f00eac9d660 |
58 | ″ | schema:url | https://doi.org/10.1007/978-3-642-14165-2_38 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | chapters |
61 | ″ | rdf:type | schema:Chapter |
62 | N07626436855540489e1a33fdec6c27b4 | rdf:first | N6cf840a128cc4d0c8586cffacfff9a33 |
63 | ″ | rdf:rest | N3117599e5bc446f3bf952b149e37d404 |
64 | N106e9a5fbd3c4748a3a268b3ff4c9e30 | rdf:first | sg:person.012465675663.27 |
65 | ″ | rdf:rest | rdf:nil |
66 | N1c35027fe2d44df9af978f00eac9d660 | schema:name | Springer Nature - SN SciGraph project |
67 | ″ | rdf:type | schema:Organization |
68 | N218127cfa7b0438ab67514c54c3bc437 | schema:familyName | Gavoille |
69 | ″ | schema:givenName | Cyril |
70 | ″ | rdf:type | schema:Person |
71 | N25c1539fb0db465990fdf3e3aab2e5ef | rdf:first | sg:person.013604232267.41 |
72 | ″ | rdf:rest | Nedc04d0b6b73402790ac08940e299eeb |
73 | N3117599e5bc446f3bf952b149e37d404 | rdf:first | Ndebbfea87a9348389e72e310f7b19dee |
74 | ″ | rdf:rest | N75df09b70d3a4a81ae63030dc0f8435f |
75 | N3de9968c67224599ba3d0cd4970e4059 | schema:name | doi |
76 | ″ | schema:value | 10.1007/978-3-642-14165-2_38 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N46485c038ab84d13ae0fb7ee9856778c | schema:isbn | 978-3-642-14164-5 |
79 | ″ | ″ | 978-3-642-14165-2 |
80 | ″ | schema:name | Automata, Languages and Programming |
81 | ″ | rdf:type | schema:Book |
82 | N58d723ed17a840febe28243afb51ff64 | schema:familyName | Spirakis |
83 | ″ | schema:givenName | Paul G. |
84 | ″ | rdf:type | schema:Person |
85 | N6a3ca6370cc04cb5a99709ec1698baf3 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1005944805 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N6cf840a128cc4d0c8586cffacfff9a33 | schema:familyName | Kirchner |
89 | ″ | schema:givenName | Claude |
90 | ″ | rdf:type | schema:Person |
91 | N75df09b70d3a4a81ae63030dc0f8435f | rdf:first | N58d723ed17a840febe28243afb51ff64 |
92 | ″ | rdf:rest | rdf:nil |
93 | N8a0bd0cfdf3a494da45096ed62169705 | rdf:first | N218127cfa7b0438ab67514c54c3bc437 |
94 | ″ | rdf:rest | N07626436855540489e1a33fdec6c27b4 |
95 | N9c88062c01e64f68be1cdbfe3c689f92 | schema:name | Springer Nature |
96 | ″ | rdf:type | schema:Organisation |
97 | Ndebbfea87a9348389e72e310f7b19dee | schema:familyName | Meyer auf der Heide |
98 | ″ | schema:givenName | Friedhelm |
99 | ″ | rdf:type | schema:Person |
100 | Nedc04d0b6b73402790ac08940e299eeb | rdf:first | sg:person.0763403270.10 |
101 | ″ | rdf:rest | Nf8063a5fa9f243f49cf53d62576d8007 |
102 | Nf41ca12fccb24409b4b9de14d8055e7d | rdf:first | Nf9109767567c4b77b356fe727d8adce2 |
103 | ″ | rdf:rest | N8a0bd0cfdf3a494da45096ed62169705 |
104 | Nf8063a5fa9f243f49cf53d62576d8007 | rdf:first | sg:person.013521032647.30 |
105 | ″ | rdf:rest | N106e9a5fbd3c4748a3a268b3ff4c9e30 |
106 | Nf9109767567c4b77b356fe727d8adce2 | schema:familyName | Abramsky |
107 | ″ | schema:givenName | Samson |
108 | ″ | rdf:type | schema:Person |
109 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Information and Computing Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Computation Theory and Mathematics |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:person.012465675663.27 | schema:affiliation | grid-institutes:grid.512679.e |
116 | ″ | schema:familyName | Turán |
117 | ″ | schema:givenName | György |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012465675663.27 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.013521032647.30 | schema:affiliation | grid-institutes:grid.185648.6 |
121 | ″ | schema:familyName | Mubayi |
122 | ″ | schema:givenName | Dhruv |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521032647.30 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.013604232267.41 | schema:affiliation | grid-institutes:grid.22401.35 |
126 | ″ | schema:familyName | Bhattacharya |
127 | ″ | schema:givenName | Amitava |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013604232267.41 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.0763403270.10 | schema:affiliation | grid-institutes:grid.185648.6 |
131 | ″ | schema:familyName | DasGupta |
132 | ″ | schema:givenName | Bhaskar |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10 |
134 | ″ | rdf:type | schema:Person |
135 | grid-institutes:grid.185648.6 | schema:alternateName | Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL |
136 | ″ | ″ | Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL |
137 | ″ | schema:name | Department of Computer Science, University of Illinois at Chicago, 60607-7053, Chicago, IL |
138 | ″ | ″ | Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.22401.35 | schema:alternateName | School of Mathematics, Tata Institute of Fundamental Research, Colaba, 400 005, Mumbai, India |
141 | ″ | schema:name | School of Mathematics, Tata Institute of Fundamental Research, Colaba, 400 005, Mumbai, India |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.512679.e | schema:alternateName | Research Group on Artificial Intelligence, University of Szeged, Hungary |
144 | ″ | schema:name | Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, 60607-7045, Chicago, IL |
145 | ″ | ″ | Research Group on Artificial Intelligence, University of Szeged, Hungary |
146 | ″ | rdf:type | schema:Organization |