Impact of Nesting Methods on Model Performance View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010-10-23

AUTHORS

Ursula Bungert , K. Heinke Schlünzen

ABSTRACT

Nesting means to use time dependent boundary values from a coarser grid simulation in a high-resolution model run. The aim of this work is to evaluate how often the forcing data have to be updated for representing the large-scale development in a realistic way. For our study, the mesoscale model METRAS is used in different resolutions: A coarse grid run provides the forcing fields with update intervals of different length for high-resolution simulations. Besides intervals of a constant length, we used a method to adapt the output times from the coarse-grid run to the time scales, in which the simulated fields change. As first results, we have seen that the simulations are very sensitive to the nesting and the forcing data. Additionally, shorter update intervals for the forcing fields lead to higher model performance and the interval length should be similar for consecutive intervals. More... »

PAGES

201-206

Book

TITLE

Integrated Systems of Meso-Meteorological and Chemical Transport Models

ISBN

978-3-642-13979-6
978-3-642-13980-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-13980-2_19

DOI

http://dx.doi.org/10.1007/978-3-642-13980-2_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023827168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Bungert", 
        "givenName": "Ursula", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, University of Hamburg, KlimaCampus, Bundesstr. 55, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, University of Hamburg, KlimaCampus, Bundesstr. 55, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. Heinke", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-10-23", 
    "datePublishedReg": "2010-10-23", 
    "description": "Nesting means to use time dependent boundary values from a coarser grid simulation in a high-resolution model run. The aim of this work is to evaluate how often the forcing data have to be updated for representing the large-scale development in a realistic way. For our study, the mesoscale model METRAS is used in different resolutions: A coarse grid run provides the forcing fields with update intervals of different length for high-resolution simulations. Besides intervals of a constant length, we used a method to adapt the output times from the coarse-grid run to the time scales, in which the simulated fields change. As first results, we have seen that the simulations are very sensitive to the nesting and the forcing data. Additionally, shorter update intervals for the forcing fields lead to higher model performance and the interval length should be similar for consecutive intervals.", 
    "editor": [
      {
        "familyName": "Baklanov", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "familyName": "Alexander", 
        "givenName": "Mahura", 
        "type": "Person"
      }, 
      {
        "familyName": "Sokhi", 
        "givenName": "Ranjeet", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-13980-2_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-13979-6", 
        "978-3-642-13980-2"
      ], 
      "name": "Integrated Systems of Meso-Meteorological and Chemical Transport Models", 
      "type": "Book"
    }, 
    "keywords": [
      "time dependent boundary values", 
      "grid run", 
      "grid simulation", 
      "high-resolution simulations", 
      "high-resolution model runs", 
      "large-scale development", 
      "high model performance", 
      "model performance", 
      "nesting method", 
      "simulations", 
      "model runs", 
      "realistic way", 
      "update interval", 
      "field changes", 
      "different resolutions", 
      "performance", 
      "boundary values", 
      "constant length", 
      "first results", 
      "field", 
      "different lengths", 
      "time scales", 
      "run", 
      "method", 
      "length", 
      "METRAS", 
      "work", 
      "resolution", 
      "results", 
      "values", 
      "time", 
      "scale", 
      "data", 
      "consecutive intervals", 
      "development", 
      "output time", 
      "interval length", 
      "impact", 
      "way", 
      "study", 
      "intervals", 
      "changes", 
      "aim", 
      "nesting", 
      "dependent boundary values", 
      "coarser grid simulation", 
      "mesoscale model METRAS", 
      "model METRAS", 
      "coarse grid run"
    ], 
    "name": "Impact of Nesting Methods on Model Performance", 
    "pagination": "201-206", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023827168"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-13980-2_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-13980-2_19", 
      "https://app.dimensions.ai/details/publication/pub.1023827168"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_351.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-13980-2_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13980-2_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13980-2_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13980-2_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13980-2_19'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-13980-2_19 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author N49c5fa2748394de096c024919eb4b26c
4 schema:datePublished 2010-10-23
5 schema:datePublishedReg 2010-10-23
6 schema:description Nesting means to use time dependent boundary values from a coarser grid simulation in a high-resolution model run. The aim of this work is to evaluate how often the forcing data have to be updated for representing the large-scale development in a realistic way. For our study, the mesoscale model METRAS is used in different resolutions: A coarse grid run provides the forcing fields with update intervals of different length for high-resolution simulations. Besides intervals of a constant length, we used a method to adapt the output times from the coarse-grid run to the time scales, in which the simulated fields change. As first results, we have seen that the simulations are very sensitive to the nesting and the forcing data. Additionally, shorter update intervals for the forcing fields lead to higher model performance and the interval length should be similar for consecutive intervals.
7 schema:editor N950157bd81b84942baaef60d6407c2e2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9d98a436485f4b4a8345462c970d99aa
12 schema:keywords METRAS
13 aim
14 boundary values
15 changes
16 coarse grid run
17 coarser grid simulation
18 consecutive intervals
19 constant length
20 data
21 dependent boundary values
22 development
23 different lengths
24 different resolutions
25 field
26 field changes
27 first results
28 grid run
29 grid simulation
30 high model performance
31 high-resolution model runs
32 high-resolution simulations
33 impact
34 interval length
35 intervals
36 large-scale development
37 length
38 mesoscale model METRAS
39 method
40 model METRAS
41 model performance
42 model runs
43 nesting
44 nesting method
45 output time
46 performance
47 realistic way
48 resolution
49 results
50 run
51 scale
52 simulations
53 study
54 time
55 time dependent boundary values
56 time scales
57 update interval
58 values
59 way
60 work
61 schema:name Impact of Nesting Methods on Model Performance
62 schema:pagination 201-206
63 schema:productId N10e3a72dc17744a7a386f5d11f593bae
64 N91e926422b474abab24678ea842f691c
65 schema:publisher Nd90e756c7b2343e78ebacdbd3d31bc5a
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023827168
67 https://doi.org/10.1007/978-3-642-13980-2_19
68 schema:sdDatePublished 2022-01-01T19:20
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N349e3264db7e4696ad09818e572de0be
71 schema:url https://doi.org/10.1007/978-3-642-13980-2_19
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N10e3a72dc17744a7a386f5d11f593bae schema:name dimensions_id
76 schema:value pub.1023827168
77 rdf:type schema:PropertyValue
78 N24cd3d3578ec44e0bbce9367504793c8 rdf:first N7276be0e25104154b0ebd564112bf16b
79 rdf:rest Nc78c8a9e04114d00a91d83a0e478c5ed
80 N349e3264db7e4696ad09818e572de0be schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N49c5fa2748394de096c024919eb4b26c rdf:first N7c86d06c3c6d4f47866ba36245d4e98a
83 rdf:rest N71a0523aab734ee3ababda2264c34bfe
84 N71a0523aab734ee3ababda2264c34bfe rdf:first sg:person.012560545423.41
85 rdf:rest rdf:nil
86 N7276be0e25104154b0ebd564112bf16b schema:familyName Alexander
87 schema:givenName Mahura
88 rdf:type schema:Person
89 N7c86d06c3c6d4f47866ba36245d4e98a schema:familyName Bungert
90 schema:givenName Ursula
91 rdf:type schema:Person
92 N8233082f091547c2a63b08e06b2aa1de schema:familyName Baklanov
93 schema:givenName Alexander
94 rdf:type schema:Person
95 N91e926422b474abab24678ea842f691c schema:name doi
96 schema:value 10.1007/978-3-642-13980-2_19
97 rdf:type schema:PropertyValue
98 N950157bd81b84942baaef60d6407c2e2 rdf:first N8233082f091547c2a63b08e06b2aa1de
99 rdf:rest N24cd3d3578ec44e0bbce9367504793c8
100 N9d98a436485f4b4a8345462c970d99aa schema:isbn 978-3-642-13979-6
101 978-3-642-13980-2
102 schema:name Integrated Systems of Meso-Meteorological and Chemical Transport Models
103 rdf:type schema:Book
104 Nb73e1f53ee7742188a50a39d1681b332 schema:familyName Sokhi
105 schema:givenName Ranjeet
106 rdf:type schema:Person
107 Nc78c8a9e04114d00a91d83a0e478c5ed rdf:first Nb73e1f53ee7742188a50a39d1681b332
108 rdf:rest rdf:nil
109 Nd90e756c7b2343e78ebacdbd3d31bc5a schema:name Springer Nature
110 rdf:type schema:Organisation
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
115 schema:name Environmental Engineering
116 rdf:type schema:DefinedTerm
117 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
118 schema:familyName Schlünzen
119 schema:givenName K. Heinke
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
121 rdf:type schema:Person
122 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, University of Hamburg, KlimaCampus, Bundesstr. 55, 20146, Hamburg, Germany
123 schema:name Meteorological Institute, University of Hamburg, KlimaCampus, Bundesstr. 55, 20146, Hamburg, Germany
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...