Ontology type: schema:Chapter Open Access: True
2010
AUTHORSMiguel A. Veganzones , Carmen Hernández
ABSTRACTIn remote sensing hyperspectral image processing, identifying the constituent spectra (endmembers) of the materials in the image is a key procedure for further analysis. The contrast between Endmember Inductions Algorithms (EIAs) is a delicate issue, because there is a shortage of validation images with accurate ground truth information, and the induced endmembers may not correspond to any know material, because of illumination and atmospheric effects. In this paper we propose a hybrid validation method, composed on a simulation module which generates the validation images from stochastic models and evaluates the EIA through Content Based Image Retrieval (CBIR) on the database of simulated hyperspectral images. We demonstrate the approach with two EIA selected from the literature. More... »
PAGES69-76
Hybrid Artificial Intelligence Systems
ISBN
978-3-642-13802-7
978-3-642-13803-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_9
DOIhttp://dx.doi.org/10.1007/978-3-642-13803-4_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015846327
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of the Basque Country",
"id": "https://www.grid.ac/institutes/grid.11480.3c",
"name": [
"Computational Intelligence Group, UPV/EHU, Facultad Informatica, Paseo Manuel de Lardizabal, San Sebastian, Spain"
],
"type": "Organization"
},
"familyName": "Veganzones",
"givenName": "Miguel A.",
"id": "sg:person.011652151423.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011652151423.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of the Basque Country",
"id": "https://www.grid.ac/institutes/grid.11480.3c",
"name": [
"Computational Intelligence Group, UPV/EHU, Facultad Informatica, Paseo Manuel de Lardizabal, San Sebastian, Spain"
],
"type": "Organization"
},
"familyName": "Hern\u00e1ndez",
"givenName": "Carmen",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1029/jb089ib07p06329",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004456584"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2008.06.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022450875"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0377-2217(86)90110-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030950635"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0377-2217(86)90110-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030950635"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1076-5670(06)44002-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036489378"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.895972",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061157192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/36.752192",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061161990"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/79.974727",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061232100"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tgrs.2004.838374",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061609299"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/warsd.2003.1295172",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093755670"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "In remote sensing hyperspectral image processing, identifying the constituent spectra (endmembers) of the materials in the image is a key procedure for further analysis. The contrast between Endmember Inductions Algorithms (EIAs) is a delicate issue, because there is a shortage of validation images with accurate ground truth information, and the induced endmembers may not correspond to any know material, because of illumination and atmospheric effects. In this paper we propose a hybrid validation method, composed on a simulation module which generates the validation images from stochastic models and evaluates the EIA through Content Based Image Retrieval (CBIR) on the database of simulated hyperspectral images. We demonstrate the approach with two EIA selected from the literature.",
"editor": [
{
"familyName": "Corchado",
"givenName": "Emilio",
"type": "Person"
},
{
"familyName": "Gra\u00f1a Romay",
"givenName": "Manuel",
"type": "Person"
},
{
"familyName": "Manhaes Savio",
"givenName": "Alexandre",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-13803-4_9",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-13802-7",
"978-3-642-13803-4"
],
"name": "Hybrid Artificial Intelligence Systems",
"type": "Book"
},
"name": "On the Use of a Hybrid Approach to Contrast Endmember Induction Algorithms",
"pagination": "69-76",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015846327"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-13803-4_9"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"4b810847bbda59598278109310e1c9e510cbbe8f4a017d949c1c3c44f3627277"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-13803-4_9",
"https://app.dimensions.ai/details/publication/pub.1015846327"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-13803-4_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_9'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
23 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES