Ontology type: schema:Chapter
2010
AUTHORSE. A. de la Cal , E. M. Fernández , R. Quiroga , J. R. Villar , J. Sedano
ABSTRACTIn previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work. More... »
PAGES143-150
Hybrid Artificial Intelligence Systems
ISBN
978-3-642-13802-7
978-3-642-13803-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_18
DOIhttp://dx.doi.org/10.1007/978-3-642-13803-4_18
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029441935
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Banking, Finance and Investment",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Commerce, Management, Tourism and Services",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques, 33203, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "de la Cal",
"givenName": "E. A.",
"id": "sg:person.016056436767.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques, 33203, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez",
"givenName": "E. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Cuantitative Economy Department, University of Oviedo, Campus del Cristo, 33006, Oviedo, Spain"
],
"type": "Organization"
},
"familyName": "Quiroga",
"givenName": "R.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Computer Science Department, University of Oviedo, Campus de Viesques, 33203, Gij\u00f3n, Spain"
],
"type": "Organization"
},
"familyName": "Villar",
"givenName": "J. R.",
"id": "sg:person.015655732472.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technological Institute of Castilla y Le\u00f3n",
"id": "https://www.grid.ac/institutes/grid.493418.3",
"name": [
"Instituto Tecnolog\u00edco de Castilla-Le\u00f3n, Lopez Bravo 70, Pol. Ind. Villalonquejar, 09001, Burgos, Spain"
],
"type": "Organization"
},
"familyName": "Sedano",
"givenName": "J.",
"id": "sg:person.012345130667.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.neucom.2008.11.030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006166489"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0305-0548(03)00063-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006628777"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0305-0548(03)00063-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006628777"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02830-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007280443",
"https://doi.org/10.1007/978-3-662-02830-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-02830-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007280443",
"https://doi.org/10.1007/978-3-662-02830-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0304-405x(98)00052-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011287970"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejor.2005.10.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039163645"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejor.2005.02.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043375425"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1044422346",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-5184-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044422346",
"https://doi.org/10.1007/978-1-4757-5184-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-5184-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044422346",
"https://doi.org/10.1007/978-1-4757-5184-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1098-111x(199911)14:11<1123::aid-int4>3.0.co;2-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045663517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/64.393137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061205052"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cifer.2003.1196291",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093708288"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "In previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work.",
"editor": [
{
"familyName": "Corchado",
"givenName": "Emilio",
"type": "Person"
},
{
"familyName": "Gra\u00f1a Romay",
"givenName": "Manuel",
"type": "Person"
},
{
"familyName": "Manhaes Savio",
"givenName": "Alexandre",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-13803-4_18",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-13802-7",
"978-3-642-13803-4"
],
"name": "Hybrid Artificial Intelligence Systems",
"type": "Book"
},
"name": "Scalability of a Methodology for Generating Technical Trading Rules with GAPs Based on Risk-Return Adjustment and Incremental Training",
"pagination": "143-150",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029441935"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-13803-4_18"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8c418073a83e793c36a3ffb4c19cd4896d6742586326ebd490206907095369ac"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-13803-4_18",
"https://app.dimensions.ai/details/publication/pub.1029441935"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000001.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-13803-4_18"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_18'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_18'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_18'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13803-4_18'
This table displays all metadata directly associated to this object as RDF triples.
139 TRIPLES
23 PREDICATES
38 URIs
20 LITERALS
8 BLANK NODES