Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Mehrdad J. Gangeh , Amir H. Shabani , Mohamed S. Kamel

ABSTRACT

Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually meaningful structures irrespective of the type of structures exist. To address these problems, we utilize nonlinear scale space by which important geometrical structures are preserved throughout the scale space construction. This adds to the discrimination power of the classification system at higher scales. We evaluate the effectiveness of this approach for texture classification in Brodatz dataset using multiple classifier systems and learning curves. Compared with the linear scale space, we obtain higher accuracy in texture classification utilizing the nonlinear scale space. More... »

PAGES

147-156

References to SciGraph publications

Book

TITLE

Image Analysis and Recognition

ISBN

978-3-642-13771-6
978-3-642-13772-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-13772-3_16

DOI

http://dx.doi.org/10.1007/978-3-642-13772-3_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021862031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gangeh", 
        "givenName": "Mehrdad J.", 
        "id": "sg:person.01153436544.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153436544.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of System Design Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shabani", 
        "givenName": "Amir H.", 
        "id": "sg:person.010052013165.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010052013165.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007925832420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005653889", 
          "https://doi.org/10.1023/a:1007925832420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00118-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011629460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00118-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011629460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2008.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016418994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2207131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023719759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030678434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73040-8_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034473738", 
          "https://doi.org/10.1007/978-3-540-73040-8_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-005-4635-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044718379", 
          "https://doi.org/10.1007/s11263-005-4635-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.56205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.761261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.824819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icias.2007.4658498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094750870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103193959", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047003534x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103193959"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually meaningful structures irrespective of the type of structures exist. To address these problems, we utilize nonlinear scale space by which important geometrical structures are preserved throughout the scale space construction. This adds to the discrimination power of the classification system at higher scales. We evaluate the effectiveness of this approach for texture classification in Brodatz dataset using multiple classifier systems and learning curves. Compared with the linear scale space, we obtain higher accuracy in texture classification utilizing the nonlinear scale space.", 
    "editor": [
      {
        "familyName": "Campilho", 
        "givenName": "Aur\u00e9lio", 
        "type": "Person"
      }, 
      {
        "familyName": "Kamel", 
        "givenName": "Mohamed", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-13772-3_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-13771-6", 
        "978-3-642-13772-3"
      ], 
      "name": "Image Analysis and Recognition", 
      "type": "Book"
    }, 
    "name": "Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems", 
    "pagination": "147-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021862031"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-13772-3_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "68281425beb2412a98e5bc8b2fe97ae4fe623b365f738b5b2531e39f587225ff"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-13772-3_16", 
      "https://app.dimensions.ai/details/publication/pub.1021862031"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29181_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-13772-3_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13772-3_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13772-3_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13772-3_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13772-3_16'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-13772-3_16 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6ef96bdf64fd49f0a2cec992dcb30f1b
4 schema:citation sg:pub.10.1007/978-3-540-73040-8_33
5 sg:pub.10.1007/s11263-005-4635-4
6 sg:pub.10.1023/a:1007925832420
7 https://app.dimensions.ai/details/publication/pub.1103193959
8 https://doi.org/10.1002/047003534x
9 https://doi.org/10.1016/0031-3203(91)90143-s
10 https://doi.org/10.1016/j.ins.2005.01.007
11 https://doi.org/10.1016/j.patrec.2008.10.012
12 https://doi.org/10.1016/s0031-3203(02)00118-8
13 https://doi.org/10.1109/34.56205
14 https://doi.org/10.1109/34.667881
15 https://doi.org/10.1109/34.761261
16 https://doi.org/10.1109/34.824819
17 https://doi.org/10.1109/icias.2007.4658498
18 https://doi.org/10.1109/tpami.2002.1017623
19 https://doi.org/10.1109/tpami.2004.32
20 https://doi.org/10.1118/1.2207131
21 schema:datePublished 2010
22 schema:datePublishedReg 2010-01-01
23 schema:description Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually meaningful structures irrespective of the type of structures exist. To address these problems, we utilize nonlinear scale space by which important geometrical structures are preserved throughout the scale space construction. This adds to the discrimination power of the classification system at higher scales. We evaluate the effectiveness of this approach for texture classification in Brodatz dataset using multiple classifier systems and learning curves. Compared with the linear scale space, we obtain higher accuracy in texture classification utilizing the nonlinear scale space.
24 schema:editor N8a47a3be45a944c6a5380ff36d534015
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Ne4d3e96cd826401fa2d9e33e0c4370e4
29 schema:name Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems
30 schema:pagination 147-156
31 schema:productId N06f03227e5be498883adec698c198a39
32 N13ef23eab6f340d48e4ec3e22894590a
33 Na5dbee3c12e5425986346569a682edae
34 schema:publisher N11670a37fbfa49f08277a259bea000f0
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021862031
36 https://doi.org/10.1007/978-3-642-13772-3_16
37 schema:sdDatePublished 2019-04-16T07:58
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc117ba3b8f754f9f946fc54170600328
40 schema:url https://link.springer.com/10.1007%2F978-3-642-13772-3_16
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N06f03227e5be498883adec698c198a39 schema:name doi
45 schema:value 10.1007/978-3-642-13772-3_16
46 rdf:type schema:PropertyValue
47 N11670a37fbfa49f08277a259bea000f0 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N13ef23eab6f340d48e4ec3e22894590a schema:name readcube_id
51 schema:value 68281425beb2412a98e5bc8b2fe97ae4fe623b365f738b5b2531e39f587225ff
52 rdf:type schema:PropertyValue
53 N460e750e969546e6b001cc0fd4cbb412 rdf:first N8fb5384426d741d6b1852bd27efd7b56
54 rdf:rest rdf:nil
55 N6b2b40143f264e16b20a84047a1743e5 rdf:first sg:person.010052013165.91
56 rdf:rest Nf3d5a5c260c24ba9add046886a80b385
57 N6ef96bdf64fd49f0a2cec992dcb30f1b rdf:first sg:person.01153436544.82
58 rdf:rest N6b2b40143f264e16b20a84047a1743e5
59 N8a47a3be45a944c6a5380ff36d534015 rdf:first Neabd7110fcc54a68a79292ec5baa9abb
60 rdf:rest N460e750e969546e6b001cc0fd4cbb412
61 N8fb5384426d741d6b1852bd27efd7b56 schema:familyName Kamel
62 schema:givenName Mohamed
63 rdf:type schema:Person
64 Na5dbee3c12e5425986346569a682edae schema:name dimensions_id
65 schema:value pub.1021862031
66 rdf:type schema:PropertyValue
67 Nc117ba3b8f754f9f946fc54170600328 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Ne4d3e96cd826401fa2d9e33e0c4370e4 schema:isbn 978-3-642-13771-6
70 978-3-642-13772-3
71 schema:name Image Analysis and Recognition
72 rdf:type schema:Book
73 Neabd7110fcc54a68a79292ec5baa9abb schema:familyName Campilho
74 schema:givenName Aurélio
75 rdf:type schema:Person
76 Nf3d5a5c260c24ba9add046886a80b385 rdf:first sg:person.01133760566.26
77 rdf:rest rdf:nil
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:person.010052013165.91 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
85 schema:familyName Shabani
86 schema:givenName Amir H.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010052013165.91
88 rdf:type schema:Person
89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
90 schema:familyName Kamel
91 schema:givenName Mohamed S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
93 rdf:type schema:Person
94 sg:person.01153436544.82 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
95 schema:familyName Gangeh
96 schema:givenName Mehrdad J.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153436544.82
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-540-73040-8_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034473738
100 https://doi.org/10.1007/978-3-540-73040-8_33
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11263-005-4635-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718379
103 https://doi.org/10.1007/s11263-005-4635-4
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1007925832420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005653889
106 https://doi.org/10.1023/a:1007925832420
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1103193959 schema:CreativeWork
109 https://doi.org/10.1002/047003534x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103193959
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0031-3203(91)90143-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1000127145
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ins.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030678434
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.patrec.2008.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016418994
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0031-3203(02)00118-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011629460
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/34.56205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156511
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/34.761261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156940
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/34.824819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157039
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/icias.2007.4658498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094750870
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tpami.2004.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742717
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1118/1.2207131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719759
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
136 schema:name Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada
137 Department of System Design Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...