Factorization Properties of Symbolic Unfoldings of Colored Petri Nets View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Thomas Chatain , Eric Fabre

ABSTRACT

The unfolding technique is an efficient tool to explore the runs of a Petri net in a true concurrency semantics, i.e. without constructing all the interleavings of concurrent actions. But even small real systems are never modeled directly as ordinary Petri nets: they use many high-level features that were designed as extensions of Petri nets. We focus here on two such features: colors and compositionality. We show that the symbolic unfolding of a product of colored Petri nets can be expressed as the product of the symbolic unfoldings of these nets. This is a necessary result in view of distributed computations based on symbolic unfoldings, as they have been developed already for standard unfoldings, to design modular verification techniques, or modular diagnosis procedures, for example. The factorization property of symbolic unfoldings is valid for several classes of colored or high-level nets. We derive it here for a class of (high-level) open nets, for which the composition is performed by connecting places rather than transitions. More... »

PAGES

165-184

References to SciGraph publications

  • 2008. Open Petri Nets: Non-deterministic Processes and Compositionality in GRAPH TRANSFORMATIONS
  • 1995. Characterizing behavioural congruences for Petri nets in CONCUR '95: CONCURRENCY THEORY
  • 2002. High-Level Net Processes in FORMAL AND NATURAL COMPUTING
  • 2003-02-28. Branching Processes of High-Level Petri Nets in TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS
  • 1991-06. Branching processes of Petri nets in ACTA INFORMATICA
  • 1998-10. M-nets: An algebra of high-level Petri nets, with an application to the semantics of concurrent programming languages in ACTA INFORMATICA
  • 1995. A class of composable high level Petri nets in APPLICATION AND THEORY OF PETRI NETS 1995
  • 1985. Categories of models for concurrency in SEMINAR ON CONCURRENCY
  • 2006. On the Construction of Pullbacks for Safe Petri Nets in PETRI NETS AND OTHER MODELS OF CONCURRENCY - ICATPN 2006
  • 2009. Simple Composition of Nets in APPLICATIONS AND THEORY OF PETRI NETS
  • 1997. A compositional partial order semantics for Petri net components in APPLICATION AND THEORY OF PETRI NETS 1997
  • 2004. Symbolic Diagnosis of Partially Observable Concurrent Systems in FORMAL TECHNIQUES FOR NETWORKED AND DISTRIBUTED SYSTEMS – FORTE 2004
  • 2008. Unfolding-Based Diagnosis of Systems with an Evolving Topology in CONCUR 2008 - CONCURRENCY THEORY
  • Book

    TITLE

    Applications and Theory of Petri Nets

    ISBN

    978-3-642-13674-0
    978-3-642-13675-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-13675-7_11

    DOI

    http://dx.doi.org/10.1007/978-3-642-13675-7_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045279007


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "LSV, ENS Cachan, CNRS, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chatain", 
            "givenName": "Thomas", 
            "id": "sg:person.013473531515.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473531515.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inria Rennes - Bretagne Atlantique Research Centre", 
              "id": "https://www.grid.ac/institutes/grid.457354.4", 
              "name": [
                "INRIA Rennes - Bretagne Atlantique, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fabre", 
            "givenName": "Eric", 
            "id": "sg:person.011362250353.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362250353.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-30232-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001204622", 
              "https://doi.org/10.1007/978-3-540-30232-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30232-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001204622", 
              "https://doi.org/10.1007/978-3-540-30232-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(97)00169-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002083878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(97)00180-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003066203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-60029-9_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004654740", 
              "https://doi.org/10.1007/3-540-60029-9_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-15670-4_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005749967", 
              "https://doi.org/10.1007/3-540-15670-4_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45711-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005789282", 
              "https://doi.org/10.1007/3-540-45711-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87405-8_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005885126", 
              "https://doi.org/10.1007/978-3-540-87405-8_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87405-8_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005885126", 
              "https://doi.org/10.1007/978-3-540-87405-8_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0960129597002314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006117287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-60218-6_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006378569", 
              "https://doi.org/10.1007/3-540-60218-6_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63139-9_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011057589", 
              "https://doi.org/10.1007/3-540-63139-9_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2007.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014432118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.entcs.2009.06.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017006048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/inco.2001.3060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017198995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002360050144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018108716", 
              "https://doi.org/10.1007/s002360050144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0960129504004311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022495342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01463946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023439124", 
              "https://doi.org/10.1007/bf01463946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01463946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023439124", 
              "https://doi.org/10.1007/bf01463946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11767589_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026532601", 
              "https://doi.org/10.1007/11767589_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11767589_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026532601", 
              "https://doi.org/10.1007/11767589_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85361-9_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035395028", 
              "https://doi.org/10.1007/978-3-540-85361-9_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02424-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043211925", 
              "https://doi.org/10.1007/978-3-642-02424-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02424-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043211925", 
              "https://doi.org/10.1007/978-3-642-02424-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36577-x_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050912994", 
              "https://doi.org/10.1007/3-540-36577-x_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36577-x_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050912994", 
              "https://doi.org/10.1007/3-540-36577-x_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/inco.2002.3117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052319010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-5401(02)93117-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054661579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-5401(02)93117-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054661579"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "The unfolding technique is an efficient tool to explore the runs of a Petri net in a true concurrency semantics, i.e. without constructing all the interleavings of concurrent actions. But even small real systems are never modeled directly as ordinary Petri nets: they use many high-level features that were designed as extensions of Petri nets. We focus here on two such features: colors and compositionality. We show that the symbolic unfolding of a product of colored Petri nets can be expressed as the product of the symbolic unfoldings of these nets. This is a necessary result in view of distributed computations based on symbolic unfoldings, as they have been developed already for standard unfoldings, to design modular verification techniques, or modular diagnosis procedures, for example. The factorization property of symbolic unfoldings is valid for several classes of colored or high-level nets. We derive it here for a class of (high-level) open nets, for which the composition is performed by connecting places rather than transitions.", 
        "editor": [
          {
            "familyName": "Lilius", 
            "givenName": "Johan", 
            "type": "Person"
          }, 
          {
            "familyName": "Penczek", 
            "givenName": "Wojciech", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-13675-7_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-13674-0", 
            "978-3-642-13675-7"
          ], 
          "name": "Applications and Theory of Petri Nets", 
          "type": "Book"
        }, 
        "name": "Factorization Properties of Symbolic Unfoldings of Colored Petri Nets", 
        "pagination": "165-184", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045279007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-13675-7_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d7ae4326ae9baca1c6d8f93688993c1f07e31ef274f801e2bbb15e2bdedc631f"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-13675-7_11", 
          "https://app.dimensions.ai/details/publication/pub.1045279007"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-13675-7_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13675-7_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13675-7_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13675-7_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13675-7_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-13675-7_11 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Nf0a99cbdb076467e9cbb3d867ec938cc
    4 schema:citation sg:pub.10.1007/11767589_10
    5 sg:pub.10.1007/3-540-15670-4_12
    6 sg:pub.10.1007/3-540-36577-x_34
    7 sg:pub.10.1007/3-540-45711-9_12
    8 sg:pub.10.1007/3-540-60029-9_36
    9 sg:pub.10.1007/3-540-60218-6_13
    10 sg:pub.10.1007/3-540-63139-9_39
    11 sg:pub.10.1007/978-3-540-30232-2_21
    12 sg:pub.10.1007/978-3-540-85361-9_19
    13 sg:pub.10.1007/978-3-540-87405-8_18
    14 sg:pub.10.1007/978-3-642-02424-5_4
    15 sg:pub.10.1007/bf01463946
    16 sg:pub.10.1007/s002360050144
    17 https://doi.org/10.1006/inco.2001.3060
    18 https://doi.org/10.1006/inco.2002.3117
    19 https://doi.org/10.1016/j.entcs.2009.06.023
    20 https://doi.org/10.1016/j.tcs.2007.01.003
    21 https://doi.org/10.1016/s0304-3975(97)00169-2
    22 https://doi.org/10.1016/s0304-3975(97)00180-1
    23 https://doi.org/10.1016/s0890-5401(02)93117-2
    24 https://doi.org/10.1017/s0960129504004311
    25 https://doi.org/10.1017/s0960129597002314
    26 schema:datePublished 2010
    27 schema:datePublishedReg 2010-01-01
    28 schema:description The unfolding technique is an efficient tool to explore the runs of a Petri net in a true concurrency semantics, i.e. without constructing all the interleavings of concurrent actions. But even small real systems are never modeled directly as ordinary Petri nets: they use many high-level features that were designed as extensions of Petri nets. We focus here on two such features: colors and compositionality. We show that the symbolic unfolding of a product of colored Petri nets can be expressed as the product of the symbolic unfoldings of these nets. This is a necessary result in view of distributed computations based on symbolic unfoldings, as they have been developed already for standard unfoldings, to design modular verification techniques, or modular diagnosis procedures, for example. The factorization property of symbolic unfoldings is valid for several classes of colored or high-level nets. We derive it here for a class of (high-level) open nets, for which the composition is performed by connecting places rather than transitions.
    29 schema:editor N8cbe9e81d0e742a48e618dcb967fec67
    30 schema:genre chapter
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf Na000d7fd2909431d83eae1d7319d2542
    34 schema:name Factorization Properties of Symbolic Unfoldings of Colored Petri Nets
    35 schema:pagination 165-184
    36 schema:productId N22c45f64040941b7ba02e38f6bfe18f5
    37 N4da34b440f9d4c1eaee459092274b651
    38 N563a715360be40968f025d787bf47f6f
    39 schema:publisher Nd8fd5a9c93544d7fbbfdea5523d15f9d
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045279007
    41 https://doi.org/10.1007/978-3-642-13675-7_11
    42 schema:sdDatePublished 2019-04-16T08:04
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N38a9c78159ae4f3c89b3e7cd5552411a
    45 schema:url https://link.springer.com/10.1007%2F978-3-642-13675-7_11
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset chapters
    48 rdf:type schema:Chapter
    49 N01869a738fcd42568af134f261eff910 rdf:first N8001389a96234cbfac5b9ef7263f6cc6
    50 rdf:rest rdf:nil
    51 N22c45f64040941b7ba02e38f6bfe18f5 schema:name readcube_id
    52 schema:value d7ae4326ae9baca1c6d8f93688993c1f07e31ef274f801e2bbb15e2bdedc631f
    53 rdf:type schema:PropertyValue
    54 N38a9c78159ae4f3c89b3e7cd5552411a schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N4da34b440f9d4c1eaee459092274b651 schema:name doi
    57 schema:value 10.1007/978-3-642-13675-7_11
    58 rdf:type schema:PropertyValue
    59 N563a715360be40968f025d787bf47f6f schema:name dimensions_id
    60 schema:value pub.1045279007
    61 rdf:type schema:PropertyValue
    62 N8001389a96234cbfac5b9ef7263f6cc6 schema:familyName Penczek
    63 schema:givenName Wojciech
    64 rdf:type schema:Person
    65 N8cbe9e81d0e742a48e618dcb967fec67 rdf:first Ncf9350bad91b4b5ca6348ddf41704821
    66 rdf:rest N01869a738fcd42568af134f261eff910
    67 Na000d7fd2909431d83eae1d7319d2542 schema:isbn 978-3-642-13674-0
    68 978-3-642-13675-7
    69 schema:name Applications and Theory of Petri Nets
    70 rdf:type schema:Book
    71 Nbfd0944ae6ed46e5b0223612eaea81be rdf:first sg:person.011362250353.22
    72 rdf:rest rdf:nil
    73 Ncf9350bad91b4b5ca6348ddf41704821 schema:familyName Lilius
    74 schema:givenName Johan
    75 rdf:type schema:Person
    76 Nd8fd5a9c93544d7fbbfdea5523d15f9d schema:location Berlin, Heidelberg
    77 schema:name Springer Berlin Heidelberg
    78 rdf:type schema:Organisation
    79 Nf0a99cbdb076467e9cbb3d867ec938cc rdf:first sg:person.013473531515.83
    80 rdf:rest Nbfd0944ae6ed46e5b0223612eaea81be
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Computation Theory and Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:person.011362250353.22 schema:affiliation https://www.grid.ac/institutes/grid.457354.4
    88 schema:familyName Fabre
    89 schema:givenName Eric
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011362250353.22
    91 rdf:type schema:Person
    92 sg:person.013473531515.83 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    93 schema:familyName Chatain
    94 schema:givenName Thomas
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013473531515.83
    96 rdf:type schema:Person
    97 sg:pub.10.1007/11767589_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026532601
    98 https://doi.org/10.1007/11767589_10
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/3-540-15670-4_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005749967
    101 https://doi.org/10.1007/3-540-15670-4_12
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/3-540-36577-x_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050912994
    104 https://doi.org/10.1007/3-540-36577-x_34
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/3-540-45711-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005789282
    107 https://doi.org/10.1007/3-540-45711-9_12
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/3-540-60029-9_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004654740
    110 https://doi.org/10.1007/3-540-60029-9_36
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-60218-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006378569
    113 https://doi.org/10.1007/3-540-60218-6_13
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/3-540-63139-9_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011057589
    116 https://doi.org/10.1007/3-540-63139-9_39
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-540-30232-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001204622
    119 https://doi.org/10.1007/978-3-540-30232-2_21
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-540-85361-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035395028
    122 https://doi.org/10.1007/978-3-540-85361-9_19
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-540-87405-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005885126
    125 https://doi.org/10.1007/978-3-540-87405-8_18
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-642-02424-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043211925
    128 https://doi.org/10.1007/978-3-642-02424-5_4
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01463946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023439124
    131 https://doi.org/10.1007/bf01463946
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s002360050144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018108716
    134 https://doi.org/10.1007/s002360050144
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1006/inco.2001.3060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017198995
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1006/inco.2002.3117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052319010
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.entcs.2009.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017006048
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.tcs.2007.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014432118
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0304-3975(97)00169-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002083878
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0304-3975(97)00180-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003066203
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s0890-5401(02)93117-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054661579
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1017/s0960129504004311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022495342
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1017/s0960129597002314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006117287
    153 rdf:type schema:CreativeWork
    154 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    155 schema:name LSV, ENS Cachan, CNRS, France
    156 rdf:type schema:Organization
    157 https://www.grid.ac/institutes/grid.457354.4 schema:alternateName Inria Rennes - Bretagne Atlantique Research Centre
    158 schema:name INRIA Rennes - Bretagne Atlantique, France
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...