Increasing Efficiency of Data Mining Systems by Machine Unification and Double Machine Cache View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Norbert Jankowski , Krzysztof Grąbczewski

ABSTRACT

In advanced meta-learning algorithms and in general data mining systems, we need to search through huge spaces of machine learning algorithms. Meta-learning and other complex data mining approaches need to train and test thousands of learning machines while searching for the best solution (model), which often is quite complex. To facilitate working with projects of any scale, we propose intelligent mechanism of machine unification and cooperating mechanism of machine cache. Data mining system equipped with the mechanisms can deal with projects many times bigger than systems devoid of machine unification and cache. Presented solutions also reduce computational time needed for learning and save memory. More... »

PAGES

380-387

Book

TITLE

Artificial Intelligence and Soft Computing

ISBN

978-3-642-13207-0
978-3-642-13208-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-13208-7_48

DOI

http://dx.doi.org/10.1007/978-3-642-13208-7_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046752773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nicolaus Copernicus University", 
          "id": "https://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Department of Informatics, Nicolaus Copernicus University, Toru\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jankowski", 
        "givenName": "Norbert", 
        "id": "sg:person.015657640671.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657640671.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nicolaus Copernicus University", 
          "id": "https://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Department of Informatics, Nicolaus Copernicus University, Toru\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u0105bczewski", 
        "givenName": "Krzysztof", 
        "id": "sg:person.011357523447.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357523447.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/cidm.2007.368852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093784940"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In advanced meta-learning algorithms and in general data mining systems, we need to search through huge spaces of machine learning algorithms. Meta-learning and other complex data mining approaches need to train and test thousands of learning machines while searching for the best solution (model), which often is quite complex. To facilitate working with projects of any scale, we propose intelligent mechanism of machine unification and cooperating mechanism of machine cache. Data mining system equipped with the mechanisms can deal with projects many times bigger than systems devoid of machine unification and cache. Presented solutions also reduce computational time needed for learning and save memory.", 
    "editor": [
      {
        "familyName": "Rutkowski", 
        "givenName": "Leszek", 
        "type": "Person"
      }, 
      {
        "familyName": "Scherer", 
        "givenName": "Rafa\u0142", 
        "type": "Person"
      }, 
      {
        "familyName": "Tadeusiewicz", 
        "givenName": "Ryszard", 
        "type": "Person"
      }, 
      {
        "familyName": "Zadeh", 
        "givenName": "Lotfi A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zurada", 
        "givenName": "Jacek M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-13208-7_48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-13207-0", 
        "978-3-642-13208-7"
      ], 
      "name": "Artificial Intelligence and Soft Computing", 
      "type": "Book"
    }, 
    "name": "Increasing Efficiency of Data Mining Systems by Machine Unification and Double Machine Cache", 
    "pagination": "380-387", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046752773"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-13208-7_48"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "deb64a8ab9c00a560c4d9e1731e23022aa8e50f819edf8c30f9f78a404f4d926"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-13208-7_48", 
      "https://app.dimensions.ai/details/publication/pub.1046752773"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-13208-7_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13208-7_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13208-7_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13208-7_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13208-7_48'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-13208-7_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfdba33941aa04dc6b57ece702750890b
4 schema:citation https://doi.org/10.1109/cidm.2007.368852
5 schema:datePublished 2010
6 schema:datePublishedReg 2010-01-01
7 schema:description In advanced meta-learning algorithms and in general data mining systems, we need to search through huge spaces of machine learning algorithms. Meta-learning and other complex data mining approaches need to train and test thousands of learning machines while searching for the best solution (model), which often is quite complex. To facilitate working with projects of any scale, we propose intelligent mechanism of machine unification and cooperating mechanism of machine cache. Data mining system equipped with the mechanisms can deal with projects many times bigger than systems devoid of machine unification and cache. Presented solutions also reduce computational time needed for learning and save memory.
8 schema:editor N6b70dd3c779c4404a92ecfc5cd70c26c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N56b7040213ec46b6b0a7c2b99bac07c9
13 schema:name Increasing Efficiency of Data Mining Systems by Machine Unification and Double Machine Cache
14 schema:pagination 380-387
15 schema:productId N0efcc2bde4ae4cecade055d8c3b1b758
16 N1a527584f562412ba4989b42696d9c2b
17 N7fc894365fbc4d7ea2ef8f41654e66e6
18 schema:publisher N1268b5ca9dff46a38bccd7c9586c3421
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046752773
20 https://doi.org/10.1007/978-3-642-13208-7_48
21 schema:sdDatePublished 2019-04-16T08:02
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nce57e34f847042a3b64656c2c01ce183
24 schema:url https://link.springer.com/10.1007%2F978-3-642-13208-7_48
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0efcc2bde4ae4cecade055d8c3b1b758 schema:name doi
29 schema:value 10.1007/978-3-642-13208-7_48
30 rdf:type schema:PropertyValue
31 N1268b5ca9dff46a38bccd7c9586c3421 schema:location Berlin, Heidelberg
32 schema:name Springer Berlin Heidelberg
33 rdf:type schema:Organisation
34 N129668cd20fc42faacb21d3c788b3f99 rdf:first sg:person.011357523447.02
35 rdf:rest rdf:nil
36 N1a527584f562412ba4989b42696d9c2b schema:name dimensions_id
37 schema:value pub.1046752773
38 rdf:type schema:PropertyValue
39 N2fe877b801c54d6397cf217f8d9332d4 schema:familyName Zurada
40 schema:givenName Jacek M.
41 rdf:type schema:Person
42 N483df36d52094cc2a46438d6777c383e rdf:first N62528cab7ccf494780d35af6d79c0a1a
43 rdf:rest N6c3fc27cf0c9409696b42d96d84118ec
44 N56b7040213ec46b6b0a7c2b99bac07c9 schema:isbn 978-3-642-13207-0
45 978-3-642-13208-7
46 schema:name Artificial Intelligence and Soft Computing
47 rdf:type schema:Book
48 N62528cab7ccf494780d35af6d79c0a1a schema:familyName Scherer
49 schema:givenName Rafał
50 rdf:type schema:Person
51 N6b70dd3c779c4404a92ecfc5cd70c26c rdf:first Nc22e0e517c884e628ea4af106c31d24a
52 rdf:rest N483df36d52094cc2a46438d6777c383e
53 N6c3fc27cf0c9409696b42d96d84118ec rdf:first N6f66d6b8f0f047d9bcc741d9218435a5
54 rdf:rest N95a186664a3749eba746bb104b304286
55 N6f66d6b8f0f047d9bcc741d9218435a5 schema:familyName Tadeusiewicz
56 schema:givenName Ryszard
57 rdf:type schema:Person
58 N7fc894365fbc4d7ea2ef8f41654e66e6 schema:name readcube_id
59 schema:value deb64a8ab9c00a560c4d9e1731e23022aa8e50f819edf8c30f9f78a404f4d926
60 rdf:type schema:PropertyValue
61 N95a186664a3749eba746bb104b304286 rdf:first Ncb840def5b0e41a59e22acd56ae86436
62 rdf:rest Nbaba0c374e8945ac8c9de7760cdf4b64
63 Nbaba0c374e8945ac8c9de7760cdf4b64 rdf:first N2fe877b801c54d6397cf217f8d9332d4
64 rdf:rest rdf:nil
65 Nc22e0e517c884e628ea4af106c31d24a schema:familyName Rutkowski
66 schema:givenName Leszek
67 rdf:type schema:Person
68 Ncb840def5b0e41a59e22acd56ae86436 schema:familyName Zadeh
69 schema:givenName Lotfi A.
70 rdf:type schema:Person
71 Nce57e34f847042a3b64656c2c01ce183 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nfdba33941aa04dc6b57ece702750890b rdf:first sg:person.015657640671.24
74 rdf:rest N129668cd20fc42faacb21d3c788b3f99
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.011357523447.02 schema:affiliation https://www.grid.ac/institutes/grid.5374.5
82 schema:familyName Grąbczewski
83 schema:givenName Krzysztof
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357523447.02
85 rdf:type schema:Person
86 sg:person.015657640671.24 schema:affiliation https://www.grid.ac/institutes/grid.5374.5
87 schema:familyName Jankowski
88 schema:givenName Norbert
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657640671.24
90 rdf:type schema:Person
91 https://doi.org/10.1109/cidm.2007.368852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093784940
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.5374.5 schema:alternateName Nicolaus Copernicus University
94 schema:name Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...