Ontology type: schema:Chapter Open Access: True
2010
AUTHORSSebastian Faust , Tal Rabin , Leonid Reyzin , Eran Tromer , Vinod Vaikuntanathan
ABSTRACTPhysical computational devices leak side-channel information that may, and often does, reveal secret internal states. We present a general transformation that compiles any circuit into a new, functionally equivalent circuit which is resilient against well-defined classes of leakage. Our construction requires a small, stateless and computation-independent leak-proof component that draws random elements from a fixed distribution. In essence, we reduce the problem of shielding arbitrarily complex circuits to the problem of shielding a single, simple component.Our approach is based on modeling the adversary as a powerful observer that inspects the device via a limited measurement apparatus. We allow the apparatus to access all the bits of the computation (except those inside the leak-proof component) and the amount of leaked information to grow unbounded over time. However, we assume that the apparatus is limited either in its computational ability (namely, it lacks the ability to decode certain linear encodings and outputs a limited number of bits per iteration), or its precision (each observed bit is flipped with some probability). While our results apply in general to such leakage classes, in particular, we obtain security against:Constant depth circuits leakage, where the measurement apparatus can be implemented by an AC0 circuit (namely, a constant depth circuit composed of NOT gates and unbounded fan-in AND and OR gates), or an ACC0[p] circuit (which is the same as AC0, except that it also uses MODp gates) which outputs a limited number of bits.Noisy leakage, where the measurement apparatus reveals all the bits of the state of the circuit, perturbed by independent binomial noise. Namely, each bit of the computation is perturbed with probability p, and remains unchanged with probability 1 − p. More... »
PAGES135-156
Advances in Cryptology – EUROCRYPT 2010
ISBN
978-3-642-13189-9
978-3-642-13190-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-13190-5_7
DOIhttp://dx.doi.org/10.1007/978-3-642-13190-5_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040247219
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "K.U.\u00a0Leuven ESAT-COSIC/IBBT",
"id": "http://www.grid.ac/institutes/None",
"name": [
"K.U.\u00a0Leuven ESAT-COSIC/IBBT"
],
"type": "Organization"
},
"familyName": "Faust",
"givenName": "Sebastian",
"id": "sg:person.012373070423.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373070423.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research",
"id": "http://www.grid.ac/institutes/None",
"name": [
"IBM Research"
],
"type": "Organization"
},
"familyName": "Rabin",
"givenName": "Tal",
"id": "sg:person.015473523512.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Boston University"
],
"type": "Organization"
},
"familyName": "Reyzin",
"givenName": "Leonid",
"id": "sg:person.016627532062.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627532062.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MIT",
"id": "http://www.grid.ac/institutes/None",
"name": [
"MIT"
],
"type": "Organization"
},
"familyName": "Tromer",
"givenName": "Eran",
"id": "sg:person.013627204443.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627204443.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM Research",
"id": "http://www.grid.ac/institutes/None",
"name": [
"IBM Research"
],
"type": "Organization"
},
"familyName": "Vaikuntanathan",
"givenName": "Vinod",
"id": "sg:person.010511407257.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511407257.61"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "Physical computational devices leak side-channel information that may, and often does, reveal secret internal states. We present a general transformation that compiles any circuit into a new, functionally equivalent circuit which is resilient against well-defined classes of leakage. Our construction requires a small, stateless and computation-independent leak-proof component that draws random elements from a fixed distribution. In essence, we reduce the problem of shielding arbitrarily complex circuits to the problem of shielding a single, simple component.Our approach is based on modeling the adversary as a powerful observer that inspects the device via a limited measurement apparatus. We allow the apparatus to access all the bits of the computation (except those inside the leak-proof component) and the amount of leaked information to grow unbounded over time. However, we assume that the apparatus is limited either in its computational ability (namely, it lacks the ability to decode certain linear encodings and outputs a limited number of bits per iteration), or its precision (each observed bit is flipped with some probability). While our results apply in general to such leakage classes, in particular, we obtain security against:Constant depth circuits leakage, where the measurement apparatus can be implemented by an AC0 circuit (namely, a constant depth circuit composed of NOT gates and unbounded fan-in AND and OR gates), or an ACC0[p] circuit (which is the same as AC0, except that it also uses MODp gates) which outputs a limited number of bits.Noisy leakage, where the measurement apparatus reveals all the bits of the state of the circuit, perturbed by independent binomial noise. Namely, each bit of the computation is perturbed with probability p, and remains unchanged with probability 1\u2009\u2212\u2009p.",
"editor": [
{
"familyName": "Gilbert",
"givenName": "Henri",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-13190-5_7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-13189-9",
"978-3-642-13190-5"
],
"name": "Advances in Cryptology \u2013 EUROCRYPT 2010",
"type": "Book"
},
"keywords": [
"random elements",
"probability p",
"probability 1",
"measurement apparatus",
"noisy case",
"general transformation",
"computational devices",
"equivalent circuit",
"computational ability",
"circuit leakage",
"AC0 circuits",
"simple components",
"computation",
"internal states",
"complex circuits",
"problem",
"noisy leakage",
"class",
"circuit",
"observer",
"noise",
"bits",
"state",
"limited number",
"devices",
"side-channel information",
"distribution",
"transformation",
"approach",
"construction",
"number",
"information",
"components",
"essence",
"adversary",
"results",
"cases",
"elements",
"precision",
"apparatus",
"time",
"leakage",
"stateless",
"security",
"amount",
"ability",
"secret internal state"
],
"name": "Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases",
"pagination": "135-156",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040247219"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-13190-5_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-13190-5_7",
"https://app.dimensions.ai/details/publication/pub.1040247219"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_319.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-13190-5_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13190-5_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13190-5_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13190-5_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13190-5_7'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
23 PREDICATES
73 URIs
66 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-13190-5_7 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N1d32f356b4fe41688f70dd3bc6d63d73 |
4 | ″ | schema:datePublished | 2010 |
5 | ″ | schema:datePublishedReg | 2010-01-01 |
6 | ″ | schema:description | Physical computational devices leak side-channel information that may, and often does, reveal secret internal states. We present a general transformation that compiles any circuit into a new, functionally equivalent circuit which is resilient against well-defined classes of leakage. Our construction requires a small, stateless and computation-independent leak-proof component that draws random elements from a fixed distribution. In essence, we reduce the problem of shielding arbitrarily complex circuits to the problem of shielding a single, simple component.Our approach is based on modeling the adversary as a powerful observer that inspects the device via a limited measurement apparatus. We allow the apparatus to access all the bits of the computation (except those inside the leak-proof component) and the amount of leaked information to grow unbounded over time. However, we assume that the apparatus is limited either in its computational ability (namely, it lacks the ability to decode certain linear encodings and outputs a limited number of bits per iteration), or its precision (each observed bit is flipped with some probability). While our results apply in general to such leakage classes, in particular, we obtain security against:Constant depth circuits leakage, where the measurement apparatus can be implemented by an AC0 circuit (namely, a constant depth circuit composed of NOT gates and unbounded fan-in AND and OR gates), or an ACC0[p] circuit (which is the same as AC0, except that it also uses MODp gates) which outputs a limited number of bits.Noisy leakage, where the measurement apparatus reveals all the bits of the state of the circuit, perturbed by independent binomial noise. Namely, each bit of the computation is perturbed with probability p, and remains unchanged with probability 1 − p. |
7 | ″ | schema:editor | N11c7ecb905bf4aca9c3e2a1d8b798a4e |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nb3021c7eb09a4257b1a24796ffec5051 |
12 | ″ | schema:keywords | AC0 circuits |
13 | ″ | ″ | ability |
14 | ″ | ″ | adversary |
15 | ″ | ″ | amount |
16 | ″ | ″ | apparatus |
17 | ″ | ″ | approach |
18 | ″ | ″ | bits |
19 | ″ | ″ | cases |
20 | ″ | ″ | circuit |
21 | ″ | ″ | circuit leakage |
22 | ″ | ″ | class |
23 | ″ | ″ | complex circuits |
24 | ″ | ″ | components |
25 | ″ | ″ | computation |
26 | ″ | ″ | computational ability |
27 | ″ | ″ | computational devices |
28 | ″ | ″ | construction |
29 | ″ | ″ | devices |
30 | ″ | ″ | distribution |
31 | ″ | ″ | elements |
32 | ″ | ″ | equivalent circuit |
33 | ″ | ″ | essence |
34 | ″ | ″ | general transformation |
35 | ″ | ″ | information |
36 | ″ | ″ | internal states |
37 | ″ | ″ | leakage |
38 | ″ | ″ | limited number |
39 | ″ | ″ | measurement apparatus |
40 | ″ | ″ | noise |
41 | ″ | ″ | noisy case |
42 | ″ | ″ | noisy leakage |
43 | ″ | ″ | number |
44 | ″ | ″ | observer |
45 | ″ | ″ | precision |
46 | ″ | ″ | probability 1 |
47 | ″ | ″ | probability p |
48 | ″ | ″ | problem |
49 | ″ | ″ | random elements |
50 | ″ | ″ | results |
51 | ″ | ″ | secret internal state |
52 | ″ | ″ | security |
53 | ″ | ″ | side-channel information |
54 | ″ | ″ | simple components |
55 | ″ | ″ | state |
56 | ″ | ″ | stateless |
57 | ″ | ″ | time |
58 | ″ | ″ | transformation |
59 | ″ | schema:name | Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases |
60 | ″ | schema:pagination | 135-156 |
61 | ″ | schema:productId | N049fe105937b48f19a0f272837eeaa25 |
62 | ″ | ″ | N41a953445ed04cfdb834d276658fce09 |
63 | ″ | schema:publisher | N1bbcb8a8935040dd89035dd796821c68 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040247219 |
65 | ″ | ″ | https://doi.org/10.1007/978-3-642-13190-5_7 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N9813d406d10c4fb297eed72d8f33fff0 |
69 | ″ | schema:url | https://doi.org/10.1007/978-3-642-13190-5_7 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | chapters |
72 | ″ | rdf:type | schema:Chapter |
73 | N049fe105937b48f19a0f272837eeaa25 | schema:name | dimensions_id |
74 | ″ | schema:value | pub.1040247219 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N11c7ecb905bf4aca9c3e2a1d8b798a4e | rdf:first | Ned33f4f292db4958b03564fd2b9773f4 |
77 | ″ | rdf:rest | rdf:nil |
78 | N1bbcb8a8935040dd89035dd796821c68 | schema:name | Springer Nature |
79 | ″ | rdf:type | schema:Organisation |
80 | N1d32f356b4fe41688f70dd3bc6d63d73 | rdf:first | sg:person.012373070423.93 |
81 | ″ | rdf:rest | N91f777a60a394459a88e65931edd6394 |
82 | N411f016939004174b654d851beefedcb | rdf:first | sg:person.013627204443.07 |
83 | ″ | rdf:rest | Nd8ec421349384d12b503f48fccbe1223 |
84 | N41a953445ed04cfdb834d276658fce09 | schema:name | doi |
85 | ″ | schema:value | 10.1007/978-3-642-13190-5_7 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N91f777a60a394459a88e65931edd6394 | rdf:first | sg:person.015473523512.58 |
88 | ″ | rdf:rest | N9c2985ff1f004d30ac38c8782b2c957a |
89 | N9813d406d10c4fb297eed72d8f33fff0 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | N9c2985ff1f004d30ac38c8782b2c957a | rdf:first | sg:person.016627532062.10 |
92 | ″ | rdf:rest | N411f016939004174b654d851beefedcb |
93 | Nb3021c7eb09a4257b1a24796ffec5051 | schema:isbn | 978-3-642-13189-9 |
94 | ″ | ″ | 978-3-642-13190-5 |
95 | ″ | schema:name | Advances in Cryptology – EUROCRYPT 2010 |
96 | ″ | rdf:type | schema:Book |
97 | Nd8ec421349384d12b503f48fccbe1223 | rdf:first | sg:person.010511407257.61 |
98 | ″ | rdf:rest | rdf:nil |
99 | Ned33f4f292db4958b03564fd2b9773f4 | schema:familyName | Gilbert |
100 | ″ | schema:givenName | Henri |
101 | ″ | rdf:type | schema:Person |
102 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Information and Computing Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Computation Theory and Mathematics |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.010511407257.61 | schema:affiliation | grid-institutes:None |
109 | ″ | schema:familyName | Vaikuntanathan |
110 | ″ | schema:givenName | Vinod |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511407257.61 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.012373070423.93 | schema:affiliation | grid-institutes:None |
114 | ″ | schema:familyName | Faust |
115 | ″ | schema:givenName | Sebastian |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012373070423.93 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.013627204443.07 | schema:affiliation | grid-institutes:None |
119 | ″ | schema:familyName | Tromer |
120 | ″ | schema:givenName | Eran |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627204443.07 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.015473523512.58 | schema:affiliation | grid-institutes:None |
124 | ″ | schema:familyName | Rabin |
125 | ″ | schema:givenName | Tal |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.016627532062.10 | schema:affiliation | grid-institutes:grid.189504.1 |
129 | ″ | schema:familyName | Reyzin |
130 | ″ | schema:givenName | Leonid |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627532062.10 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:None | schema:alternateName | IBM Research |
134 | ″ | ″ | K.U. Leuven ESAT-COSIC/IBBT |
135 | ″ | ″ | MIT |
136 | ″ | schema:name | IBM Research |
137 | ″ | ″ | K.U. Leuven ESAT-COSIC/IBBT |
138 | ″ | ″ | MIT |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.189504.1 | schema:alternateName | Boston University |
141 | ″ | schema:name | Boston University |
142 | ″ | rdf:type | schema:Organization |