InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Rajkumar Buyya , Rajiv Ranjan , Rodrigo N. Calheiros

ABSTRACT

Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios. More... »

PAGES

13-31

References to SciGraph publications

  • 2007. Service Oriented Sensor Web in SENSOR NETWORKS AND CONFIGURATION
  • Book

    TITLE

    Algorithms and Architectures for Parallel Processing

    ISBN

    978-3-642-13118-9
    978-3-642-13119-6

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-13119-6_2

    DOI

    http://dx.doi.org/10.1007/978-3-642-13119-6_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004604750


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering, The University of Melbourne, Australia", 
                "Manjrasoft Pty Ltd, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buyya", 
            "givenName": "Rajkumar", 
            "id": "sg:person.011522212765.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522212765.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ranjan", 
            "givenName": "Rajiv", 
            "id": "sg:person.010424471355.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424471355.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Melbourne", 
              "id": "https://www.grid.ac/institutes/grid.1008.9", 
              "name": [
                "Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering, The University of Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Calheiros", 
            "givenName": "Rodrigo N.", 
            "id": "sg:person.016262101533.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016262101533.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.future.2008.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008313603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-37366-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017698628", 
              "https://doi.org/10.1007/3-540-37366-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpe.690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040140498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1327512.1327513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042596181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/945445.945462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049542704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/comst.2005.1610546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061258143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2004.842784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccgrid.2008.65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093481723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpp.2006.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093530544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/hpcsim.2009.5192685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094191003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwqos.2008.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094297785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccgrid.2009.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094491848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/grid.2009.5353066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094961894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2007.370241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095674819"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.", 
        "editor": [
          {
            "familyName": "Hsu", 
            "givenName": "Ching-Hsien", 
            "type": "Person"
          }, 
          {
            "familyName": "Yang", 
            "givenName": "Laurence T.", 
            "type": "Person"
          }, 
          {
            "familyName": "Park", 
            "givenName": "Jong Hyuk", 
            "type": "Person"
          }, 
          {
            "familyName": "Yeo", 
            "givenName": "Sang-Soo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-13119-6_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-13118-9", 
            "978-3-642-13119-6"
          ], 
          "name": "Algorithms and Architectures for Parallel Processing", 
          "type": "Book"
        }, 
        "name": "InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services", 
        "pagination": "13-31", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004604750"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-13119-6_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "15f13144902e7f033529b8e6a8d88e435b4fcde3a2ec659e87306b15672336a7"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-13119-6_2", 
          "https://app.dimensions.ai/details/publication/pub.1004604750"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29216_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-13119-6_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13119-6_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13119-6_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13119-6_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13119-6_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-13119-6_2 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N0c59951d2db9425b87869e3eaa343ba9
    4 schema:citation sg:pub.10.1007/3-540-37366-7_3
    5 https://doi.org/10.1002/cpe.690
    6 https://doi.org/10.1016/j.future.2008.12.001
    7 https://doi.org/10.1109/ccgrid.2008.65
    8 https://doi.org/10.1109/ccgrid.2009.93
    9 https://doi.org/10.1109/comst.2005.1610546
    10 https://doi.org/10.1109/grid.2009.5353066
    11 https://doi.org/10.1109/hpcsim.2009.5192685
    12 https://doi.org/10.1109/icpp.2006.52
    13 https://doi.org/10.1109/ipdps.2007.370241
    14 https://doi.org/10.1109/iwqos.2008.10
    15 https://doi.org/10.1109/jproc.2004.842784
    16 https://doi.org/10.1145/1327512.1327513
    17 https://doi.org/10.1145/945445.945462
    18 schema:datePublished 2010
    19 schema:datePublishedReg 2010-01-01
    20 schema:description Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.
    21 schema:editor Na9b71a9215ad4d7ca0c427d251ecd3e9
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N0806ef0086554c21a4431ebba43aa169
    26 schema:name InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services
    27 schema:pagination 13-31
    28 schema:productId N1595cef11f4746bc8f9dc3ce38c15be6
    29 N5470660da8d0482cba3a505f233b2d5c
    30 Ndeef665988f648f48050a2a30296931c
    31 schema:publisher N74b2320734b147d4b0add9e6c20cea75
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004604750
    33 https://doi.org/10.1007/978-3-642-13119-6_2
    34 schema:sdDatePublished 2019-04-16T08:04
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N0ce28022811c44e0903ebc2e03620812
    37 schema:url https://link.springer.com/10.1007%2F978-3-642-13119-6_2
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N0806ef0086554c21a4431ebba43aa169 schema:isbn 978-3-642-13118-9
    42 978-3-642-13119-6
    43 schema:name Algorithms and Architectures for Parallel Processing
    44 rdf:type schema:Book
    45 N0c59951d2db9425b87869e3eaa343ba9 rdf:first sg:person.011522212765.30
    46 rdf:rest N8c27a9539679418485c21ec9dd976191
    47 N0ce28022811c44e0903ebc2e03620812 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N11eb3465e1c747cb8fd7b332d961c606 rdf:first N560eafee42a3422bb039c2222f9ef574
    50 rdf:rest N2c437996f4a74f9c87326a41d4cc300b
    51 N1595cef11f4746bc8f9dc3ce38c15be6 schema:name dimensions_id
    52 schema:value pub.1004604750
    53 rdf:type schema:PropertyValue
    54 N2c437996f4a74f9c87326a41d4cc300b rdf:first Nd6a911f3d2a942e38e102feaef5ece76
    55 rdf:rest rdf:nil
    56 N3fa00dd4ea56463fb702c74471e0ceac rdf:first sg:person.016262101533.03
    57 rdf:rest rdf:nil
    58 N5470660da8d0482cba3a505f233b2d5c schema:name readcube_id
    59 schema:value 15f13144902e7f033529b8e6a8d88e435b4fcde3a2ec659e87306b15672336a7
    60 rdf:type schema:PropertyValue
    61 N560eafee42a3422bb039c2222f9ef574 schema:familyName Park
    62 schema:givenName Jong Hyuk
    63 rdf:type schema:Person
    64 N74b2320734b147d4b0add9e6c20cea75 schema:location Berlin, Heidelberg
    65 schema:name Springer Berlin Heidelberg
    66 rdf:type schema:Organisation
    67 N7f2ce87ac330448bb70e4a0bd0de62fa rdf:first N9637316816764655b8a1c187c6e4995f
    68 rdf:rest N11eb3465e1c747cb8fd7b332d961c606
    69 N8c27a9539679418485c21ec9dd976191 rdf:first sg:person.010424471355.22
    70 rdf:rest N3fa00dd4ea56463fb702c74471e0ceac
    71 N9637316816764655b8a1c187c6e4995f schema:familyName Yang
    72 schema:givenName Laurence T.
    73 rdf:type schema:Person
    74 Na9b71a9215ad4d7ca0c427d251ecd3e9 rdf:first Nfbcd49cb33f24ca2b0647afc3583f70f
    75 rdf:rest N7f2ce87ac330448bb70e4a0bd0de62fa
    76 Nd6a911f3d2a942e38e102feaef5ece76 schema:familyName Yeo
    77 schema:givenName Sang-Soo
    78 rdf:type schema:Person
    79 Ndeef665988f648f48050a2a30296931c schema:name doi
    80 schema:value 10.1007/978-3-642-13119-6_2
    81 rdf:type schema:PropertyValue
    82 Nfbcd49cb33f24ca2b0647afc3583f70f schema:familyName Hsu
    83 schema:givenName Ching-Hsien
    84 rdf:type schema:Person
    85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Information and Computing Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Information Systems
    90 rdf:type schema:DefinedTerm
    91 sg:person.010424471355.22 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    92 schema:familyName Ranjan
    93 schema:givenName Rajiv
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424471355.22
    95 rdf:type schema:Person
    96 sg:person.011522212765.30 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    97 schema:familyName Buyya
    98 schema:givenName Rajkumar
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522212765.30
    100 rdf:type schema:Person
    101 sg:person.016262101533.03 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
    102 schema:familyName Calheiros
    103 schema:givenName Rodrigo N.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016262101533.03
    105 rdf:type schema:Person
    106 sg:pub.10.1007/3-540-37366-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017698628
    107 https://doi.org/10.1007/3-540-37366-7_3
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/cpe.690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040140498
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.future.2008.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008313603
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/ccgrid.2008.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093481723
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/ccgrid.2009.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094491848
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/comst.2005.1610546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258143
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/grid.2009.5353066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094961894
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/hpcsim.2009.5192685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094191003
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/icpp.2006.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093530544
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/ipdps.2007.370241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095674819
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/iwqos.2008.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094297785
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/jproc.2004.842784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296396
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1145/1327512.1327513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042596181
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/945445.945462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049542704
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
    136 schema:name School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
    139 schema:name Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering, The University of Melbourne, Australia
    140 Manjrasoft Pty Ltd, Australia
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...