Ontology type: schema:Chapter Open Access: True
2010
AUTHORSRosario Gennaro , Jonathan Katz , Hugo Krawczyk , Tal Rabin
ABSTRACTNetwork coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to “pollution attacks” in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized “network coding signatures” addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically – e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients). More... »
PAGES142-160
Public Key Cryptography – PKC 2010
ISBN
978-3-642-13012-0
978-3-642-13013-7
http://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9
DOIhttp://dx.doi.org/10.1007/978-3-642-13013-7_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027672014
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY",
"id": "http://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, Hawthorne, NY"
],
"type": "Organization"
},
"familyName": "Gennaro",
"givenName": "Rosario",
"id": "sg:person.013573255563.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Maryland",
"id": "http://www.grid.ac/institutes/grid.410443.6",
"name": [
"Department of Computer Science, University of Maryland"
],
"type": "Organization"
},
"familyName": "Katz",
"givenName": "Jonathan",
"id": "sg:person.01354261156.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY",
"id": "http://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, Hawthorne, NY"
],
"type": "Organization"
},
"familyName": "Krawczyk",
"givenName": "Hugo",
"id": "sg:person.013004021661.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY",
"id": "http://www.grid.ac/institutes/grid.481554.9",
"name": [
"IBM T.J. Watson Research Center, Hawthorne, NY"
],
"type": "Organization"
},
"familyName": "Rabin",
"givenName": "Tal",
"id": "sg:person.015473523512.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "Network coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to \u201cpollution attacks\u201d in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized \u201cnetwork coding signatures\u201d addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically \u2013 e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients).",
"editor": [
{
"familyName": "Nguyen",
"givenName": "Phong Q.",
"type": "Person"
},
{
"familyName": "Pointcheval",
"givenName": "David",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-13013-7_9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-13012-0",
"978-3-642-13013-7"
],
"name": "Public Key Cryptography \u2013 PKC 2010",
"type": "Book"
},
"keywords": [
"network coding",
"Secure Network Coding",
"homomorphic signature scheme",
"random linear network",
"moderate size networks",
"hardness of factoring",
"cryptographic authentication",
"homomorphic hashing",
"malicious nodes",
"pollution attacks",
"such attacks",
"homomorphic signatures",
"hashing scheme",
"data packets",
"RSA assumption",
"signature scheme",
"message recovery",
"centralized control",
"computational efficiency",
"coding",
"linear network",
"packets",
"network",
"scheme",
"nodes",
"attacks",
"vector space",
"authentication",
"hashing",
"standard end",
"recent years",
"throughput",
"robustness",
"communication",
"module",
"factoring",
"modified approach",
"integers",
"signatures",
"space",
"technique",
"efficiency",
"way",
"field",
"end",
"assumption",
"variants",
"area",
"control",
"transit",
"potential",
"years",
"mandate",
"recovery",
"hardness",
"problem",
"approach"
],
"name": "Secure Network Coding over the Integers",
"pagination": "142-160",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027672014"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-13013-7_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-13013-7_9",
"https://app.dimensions.ai/details/publication/pub.1027672014"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_51.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-13013-7_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
23 PREDICATES
85 URIs
76 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-13013-7_9 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0804 |
3 | ″ | ″ | anzsrc-for:10 |
4 | ″ | ″ | anzsrc-for:1005 |
5 | ″ | schema:author | N227a031872d048b1bec3de71394bdead |
6 | ″ | schema:datePublished | 2010 |
7 | ″ | schema:datePublishedReg | 2010-01-01 |
8 | ″ | schema:description | Network coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to “pollution attacks” in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized “network coding signatures” addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically – e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients). |
9 | ″ | schema:editor | N801e07e20c5348f39cb16bfe05a5b983 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | true |
13 | ″ | schema:isPartOf | N4511a0fd157140fdbf49622d70a5a019 |
14 | ″ | schema:keywords | RSA assumption |
15 | ″ | ″ | Secure Network Coding |
16 | ″ | ″ | approach |
17 | ″ | ″ | area |
18 | ″ | ″ | assumption |
19 | ″ | ″ | attacks |
20 | ″ | ″ | authentication |
21 | ″ | ″ | centralized control |
22 | ″ | ″ | coding |
23 | ″ | ″ | communication |
24 | ″ | ″ | computational efficiency |
25 | ″ | ″ | control |
26 | ″ | ″ | cryptographic authentication |
27 | ″ | ″ | data packets |
28 | ″ | ″ | efficiency |
29 | ″ | ″ | end |
30 | ″ | ″ | factoring |
31 | ″ | ″ | field |
32 | ″ | ″ | hardness |
33 | ″ | ″ | hardness of factoring |
34 | ″ | ″ | hashing |
35 | ″ | ″ | hashing scheme |
36 | ″ | ″ | homomorphic hashing |
37 | ″ | ″ | homomorphic signature scheme |
38 | ″ | ″ | homomorphic signatures |
39 | ″ | ″ | integers |
40 | ″ | ″ | linear network |
41 | ″ | ″ | malicious nodes |
42 | ″ | ″ | mandate |
43 | ″ | ″ | message recovery |
44 | ″ | ″ | moderate size networks |
45 | ″ | ″ | modified approach |
46 | ″ | ″ | module |
47 | ″ | ″ | network |
48 | ″ | ″ | network coding |
49 | ″ | ″ | nodes |
50 | ″ | ″ | packets |
51 | ″ | ″ | pollution attacks |
52 | ″ | ″ | potential |
53 | ″ | ″ | problem |
54 | ″ | ″ | random linear network |
55 | ″ | ″ | recent years |
56 | ″ | ″ | recovery |
57 | ″ | ″ | robustness |
58 | ″ | ″ | scheme |
59 | ″ | ″ | signature scheme |
60 | ″ | ″ | signatures |
61 | ″ | ″ | space |
62 | ″ | ″ | standard end |
63 | ″ | ″ | such attacks |
64 | ″ | ″ | technique |
65 | ″ | ″ | throughput |
66 | ″ | ″ | transit |
67 | ″ | ″ | variants |
68 | ″ | ″ | vector space |
69 | ″ | ″ | way |
70 | ″ | ″ | years |
71 | ″ | schema:name | Secure Network Coding over the Integers |
72 | ″ | schema:pagination | 142-160 |
73 | ″ | schema:productId | N520e3229a87346faa9d3cff6675b33e2 |
74 | ″ | ″ | Nb463cad4a973454784a0a002d95dd6ee |
75 | ″ | schema:publisher | Ne4a1f16136b244c98cd143845c97aef4 |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027672014 |
77 | ″ | ″ | https://doi.org/10.1007/978-3-642-13013-7_9 |
78 | ″ | schema:sdDatePublished | 2022-05-10T10:55 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | Nb54efc851da0408584951abdc1fec785 |
81 | ″ | schema:url | https://doi.org/10.1007/978-3-642-13013-7_9 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | chapters |
84 | ″ | rdf:type | schema:Chapter |
85 | N1981b66fb1894290880e0ab98ffaad6f | rdf:first | sg:person.015473523512.58 |
86 | ″ | rdf:rest | rdf:nil |
87 | N227a031872d048b1bec3de71394bdead | rdf:first | sg:person.013573255563.35 |
88 | ″ | rdf:rest | N2ea774711545435ca149943724eacc57 |
89 | N29c92f024c4048b9bc0981a40e8bcf6b | rdf:first | Nde3ac4ec990a41e68647169b4dc7834b |
90 | ″ | rdf:rest | rdf:nil |
91 | N2ea774711545435ca149943724eacc57 | rdf:first | sg:person.01354261156.67 |
92 | ″ | rdf:rest | Ncf224ab2a43d4c48a87ba6b821911b58 |
93 | N4511a0fd157140fdbf49622d70a5a019 | schema:isbn | 978-3-642-13012-0 |
94 | ″ | ″ | 978-3-642-13013-7 |
95 | ″ | schema:name | Public Key Cryptography – PKC 2010 |
96 | ″ | rdf:type | schema:Book |
97 | N520e3229a87346faa9d3cff6675b33e2 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1027672014 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N801e07e20c5348f39cb16bfe05a5b983 | rdf:first | N96e8b51e3617421ba23fdaa21f9f3ab1 |
101 | ″ | rdf:rest | N29c92f024c4048b9bc0981a40e8bcf6b |
102 | N96e8b51e3617421ba23fdaa21f9f3ab1 | schema:familyName | Nguyen |
103 | ″ | schema:givenName | Phong Q. |
104 | ″ | rdf:type | schema:Person |
105 | Nb463cad4a973454784a0a002d95dd6ee | schema:name | doi |
106 | ″ | schema:value | 10.1007/978-3-642-13013-7_9 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | Nb54efc851da0408584951abdc1fec785 | schema:name | Springer Nature - SN SciGraph project |
109 | ″ | rdf:type | schema:Organization |
110 | Ncf224ab2a43d4c48a87ba6b821911b58 | rdf:first | sg:person.013004021661.30 |
111 | ″ | rdf:rest | N1981b66fb1894290880e0ab98ffaad6f |
112 | Nde3ac4ec990a41e68647169b4dc7834b | schema:familyName | Pointcheval |
113 | ″ | schema:givenName | David |
114 | ″ | rdf:type | schema:Person |
115 | Ne4a1f16136b244c98cd143845c97aef4 | schema:name | Springer Nature |
116 | ″ | rdf:type | schema:Organisation |
117 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information and Computing Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Data Format |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Technology |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:1005 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Communications Technologies |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | sg:person.013004021661.30 | schema:affiliation | grid-institutes:grid.481554.9 |
130 | ″ | schema:familyName | Krawczyk |
131 | ″ | schema:givenName | Hugo |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.01354261156.67 | schema:affiliation | grid-institutes:grid.410443.6 |
135 | ″ | schema:familyName | Katz |
136 | ″ | schema:givenName | Jonathan |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.013573255563.35 | schema:affiliation | grid-institutes:grid.481554.9 |
140 | ″ | schema:familyName | Gennaro |
141 | ″ | schema:givenName | Rosario |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.015473523512.58 | schema:affiliation | grid-institutes:grid.481554.9 |
145 | ″ | schema:familyName | Rabin |
146 | ″ | schema:givenName | Tal |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58 |
148 | ″ | rdf:type | schema:Person |
149 | grid-institutes:grid.410443.6 | schema:alternateName | Department of Computer Science, University of Maryland |
150 | ″ | schema:name | Department of Computer Science, University of Maryland |
151 | ″ | rdf:type | schema:Organization |
152 | grid-institutes:grid.481554.9 | schema:alternateName | IBM T.J. Watson Research Center, Hawthorne, NY |
153 | ″ | schema:name | IBM T.J. Watson Research Center, Hawthorne, NY |
154 | ″ | rdf:type | schema:Organization |