Secure Network Coding over the Integers View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Rosario Gennaro , Jonathan Katz , Hugo Krawczyk , Tal Rabin

ABSTRACT

Network coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to “pollution attacks” in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized “network coding signatures” addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically – e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients). More... »

PAGES

142-160

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9

DOI

http://dx.doi.org/10.1007/978-3-642-13013-7_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027672014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Hawthorne, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennaro", 
        "givenName": "Rosario", 
        "id": "sg:person.013573255563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Maryland", 
          "id": "http://www.grid.ac/institutes/grid.410443.6", 
          "name": [
            "Department of Computer Science, University of Maryland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katz", 
        "givenName": "Jonathan", 
        "id": "sg:person.01354261156.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Hawthorne, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krawczyk", 
        "givenName": "Hugo", 
        "id": "sg:person.013004021661.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, Hawthorne, NY", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, Hawthorne, NY"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabin", 
        "givenName": "Tal", 
        "id": "sg:person.015473523512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Network coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to \u201cpollution attacks\u201d in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized \u201cnetwork coding signatures\u201d addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically \u2013 e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients).", 
    "editor": [
      {
        "familyName": "Nguyen", 
        "givenName": "Phong Q.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pointcheval", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-13013-7_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-13012-0", 
        "978-3-642-13013-7"
      ], 
      "name": "Public Key Cryptography \u2013 PKC 2010", 
      "type": "Book"
    }, 
    "keywords": [
      "network coding", 
      "Secure Network Coding", 
      "homomorphic signature scheme", 
      "random linear network", 
      "moderate size networks", 
      "hardness of factoring", 
      "cryptographic authentication", 
      "homomorphic hashing", 
      "malicious nodes", 
      "pollution attacks", 
      "such attacks", 
      "homomorphic signatures", 
      "hashing scheme", 
      "data packets", 
      "RSA assumption", 
      "signature scheme", 
      "message recovery", 
      "centralized control", 
      "computational efficiency", 
      "coding", 
      "linear network", 
      "packets", 
      "network", 
      "scheme", 
      "nodes", 
      "attacks", 
      "vector space", 
      "authentication", 
      "hashing", 
      "standard end", 
      "recent years", 
      "throughput", 
      "robustness", 
      "communication", 
      "module", 
      "factoring", 
      "modified approach", 
      "integers", 
      "signatures", 
      "space", 
      "technique", 
      "efficiency", 
      "way", 
      "field", 
      "end", 
      "assumption", 
      "variants", 
      "area", 
      "control", 
      "transit", 
      "potential", 
      "years", 
      "mandate", 
      "recovery", 
      "hardness", 
      "problem", 
      "approach"
    ], 
    "name": "Secure Network Coding over the Integers", 
    "pagination": "142-160", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027672014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-13013-7_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-13013-7_9", 
      "https://app.dimensions.ai/details/publication/pub.1027672014"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_51.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-13013-7_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-13013-7_9'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      85 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-13013-7_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 anzsrc-for:10
4 anzsrc-for:1005
5 schema:author N227a031872d048b1bec3de71394bdead
6 schema:datePublished 2010
7 schema:datePublishedReg 2010-01-01
8 schema:description Network coding offers the potential to increase throughput and improve robustness without any centralized control. Unfortunately, network coding is highly susceptible to “pollution attacks” in which malicious nodes modify packets improperly so as to prevent message recovery at the recipient(s); such attacks cannot be prevented using standard end-to-end cryptographic authentication because network coding mandates that intermediate nodes modify data packets in transit.Specialized “network coding signatures” addressing this problem have been developed in recent years using homomorphic hashing and homomorphic signatures. We contribute to this area in several ways:We show the first homomorphic signature scheme based on the RSA assumption (in the random oracle model).We give a homomorphic hashing scheme that is more efficient than existing schemes, and which leads to network coding signatures based on the hardness of factoring (in the standard model).We describe variants of existing schemes that reduce the communication overhead for moderate-size networks, and improve computational efficiency (in some cases quite dramatically – e.g., we achieve a 20-fold speedup in signature generation at intermediate nodes).Underlying our techniques is a modified approach to random linear network coding where instead of working in a vector space over a field, we work in a module over the integers (with small coefficients).
9 schema:editor N801e07e20c5348f39cb16bfe05a5b983
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N4511a0fd157140fdbf49622d70a5a019
14 schema:keywords RSA assumption
15 Secure Network Coding
16 approach
17 area
18 assumption
19 attacks
20 authentication
21 centralized control
22 coding
23 communication
24 computational efficiency
25 control
26 cryptographic authentication
27 data packets
28 efficiency
29 end
30 factoring
31 field
32 hardness
33 hardness of factoring
34 hashing
35 hashing scheme
36 homomorphic hashing
37 homomorphic signature scheme
38 homomorphic signatures
39 integers
40 linear network
41 malicious nodes
42 mandate
43 message recovery
44 moderate size networks
45 modified approach
46 module
47 network
48 network coding
49 nodes
50 packets
51 pollution attacks
52 potential
53 problem
54 random linear network
55 recent years
56 recovery
57 robustness
58 scheme
59 signature scheme
60 signatures
61 space
62 standard end
63 such attacks
64 technique
65 throughput
66 transit
67 variants
68 vector space
69 way
70 years
71 schema:name Secure Network Coding over the Integers
72 schema:pagination 142-160
73 schema:productId N520e3229a87346faa9d3cff6675b33e2
74 Nb463cad4a973454784a0a002d95dd6ee
75 schema:publisher Ne4a1f16136b244c98cd143845c97aef4
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027672014
77 https://doi.org/10.1007/978-3-642-13013-7_9
78 schema:sdDatePublished 2022-05-10T10:55
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Nb54efc851da0408584951abdc1fec785
81 schema:url https://doi.org/10.1007/978-3-642-13013-7_9
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N1981b66fb1894290880e0ab98ffaad6f rdf:first sg:person.015473523512.58
86 rdf:rest rdf:nil
87 N227a031872d048b1bec3de71394bdead rdf:first sg:person.013573255563.35
88 rdf:rest N2ea774711545435ca149943724eacc57
89 N29c92f024c4048b9bc0981a40e8bcf6b rdf:first Nde3ac4ec990a41e68647169b4dc7834b
90 rdf:rest rdf:nil
91 N2ea774711545435ca149943724eacc57 rdf:first sg:person.01354261156.67
92 rdf:rest Ncf224ab2a43d4c48a87ba6b821911b58
93 N4511a0fd157140fdbf49622d70a5a019 schema:isbn 978-3-642-13012-0
94 978-3-642-13013-7
95 schema:name Public Key Cryptography – PKC 2010
96 rdf:type schema:Book
97 N520e3229a87346faa9d3cff6675b33e2 schema:name dimensions_id
98 schema:value pub.1027672014
99 rdf:type schema:PropertyValue
100 N801e07e20c5348f39cb16bfe05a5b983 rdf:first N96e8b51e3617421ba23fdaa21f9f3ab1
101 rdf:rest N29c92f024c4048b9bc0981a40e8bcf6b
102 N96e8b51e3617421ba23fdaa21f9f3ab1 schema:familyName Nguyen
103 schema:givenName Phong Q.
104 rdf:type schema:Person
105 Nb463cad4a973454784a0a002d95dd6ee schema:name doi
106 schema:value 10.1007/978-3-642-13013-7_9
107 rdf:type schema:PropertyValue
108 Nb54efc851da0408584951abdc1fec785 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Ncf224ab2a43d4c48a87ba6b821911b58 rdf:first sg:person.013004021661.30
111 rdf:rest N1981b66fb1894290880e0ab98ffaad6f
112 Nde3ac4ec990a41e68647169b4dc7834b schema:familyName Pointcheval
113 schema:givenName David
114 rdf:type schema:Person
115 Ne4a1f16136b244c98cd143845c97aef4 schema:name Springer Nature
116 rdf:type schema:Organisation
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
121 schema:name Data Format
122 rdf:type schema:DefinedTerm
123 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
124 schema:name Technology
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
127 schema:name Communications Technologies
128 rdf:type schema:DefinedTerm
129 sg:person.013004021661.30 schema:affiliation grid-institutes:grid.481554.9
130 schema:familyName Krawczyk
131 schema:givenName Hugo
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30
133 rdf:type schema:Person
134 sg:person.01354261156.67 schema:affiliation grid-institutes:grid.410443.6
135 schema:familyName Katz
136 schema:givenName Jonathan
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354261156.67
138 rdf:type schema:Person
139 sg:person.013573255563.35 schema:affiliation grid-institutes:grid.481554.9
140 schema:familyName Gennaro
141 schema:givenName Rosario
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35
143 rdf:type schema:Person
144 sg:person.015473523512.58 schema:affiliation grid-institutes:grid.481554.9
145 schema:familyName Rabin
146 schema:givenName Tal
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
148 rdf:type schema:Person
149 grid-institutes:grid.410443.6 schema:alternateName Department of Computer Science, University of Maryland
150 schema:name Department of Computer Science, University of Maryland
151 rdf:type schema:Organization
152 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, Hawthorne, NY
153 schema:name IBM T.J. Watson Research Center, Hawthorne, NY
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...