Mutant Zhuang-Zi Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Jintai Ding , Dieter S. Schmidt

ABSTRACT

In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.

PAGES

28-40

References to SciGraph publications

Book

TITLE

Post-Quantum Cryptography

ISBN

978-3-642-12928-5
978-3-642-12929-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3

DOI

http://dx.doi.org/10.1007/978-3-642-12929-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026065552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.466112.6", 
          "name": [
            "Department of Mathematical Sciences", 
            "Department of Mathematics, Southern Chinese University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jintai", 
        "id": "sg:person.010723403013.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Computer Science, University of Cincinnati, 45220, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Dieter S.", 
        "id": "sg:person.015464666561.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45539-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285811", 
          "https://doi.org/10.1007/3-540-45539-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88403-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585614", 
          "https://doi.org/10.1007/978-3-540-88403-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88403-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585614", 
          "https://doi.org/10.1007/978-3-540-88403-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/780506.780516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007436250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017119496", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b102438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017119496", 
          "https://doi.org/10.1007/b102438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b102438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017119496", 
          "https://doi.org/10.1007/b102438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-36946-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026168664", 
          "https://doi.org/10.1007/978-0-387-36946-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1026168664", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45961-8_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035601256", 
          "https://doi.org/10.1007/3-540-45961-8_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4049(99)00005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040947089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14423-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918753", 
          "https://doi.org/10.1007/978-3-642-14423-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14423-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918753", 
          "https://doi.org/10.1007/978-3-642-14423-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008341625464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044711662", 
          "https://doi.org/10.1023/a:1008341625464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48405-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045972569", 
          "https://doi.org/10.1007/3-540-48405-1_2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.", 
    "editor": [
      {
        "familyName": "Sendrier", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-12929-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-12928-5", 
        "978-3-642-12929-2"
      ], 
      "name": "Post-Quantum Cryptography", 
      "type": "Book"
    }, 
    "name": "Mutant Zhuang-Zi Algorithm", 
    "pagination": "28-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026065552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-12929-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c2cc6f5407a21008398b881962964859b77d6d3f185eecd09d226ea061110ca"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-12929-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1026065552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29194_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-12929-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-12929-2_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne282bec49eae436287aec6f4f50d23a1
4 schema:citation sg:pub.10.1007/3-540-45539-6_27
5 sg:pub.10.1007/3-540-45961-8_39
6 sg:pub.10.1007/3-540-48405-1_2
7 sg:pub.10.1007/978-0-387-36946-4
8 sg:pub.10.1007/978-3-540-88403-3_14
9 sg:pub.10.1007/978-3-642-14423-3_7
10 sg:pub.10.1007/b102438
11 sg:pub.10.1023/a:1008341625464
12 https://app.dimensions.ai/details/publication/pub.1017119496
13 https://app.dimensions.ai/details/publication/pub.1026168664
14 https://doi.org/10.1016/s0022-4049(99)00005-5
15 https://doi.org/10.1145/780506.780516
16 schema:datePublished 2010
17 schema:datePublishedReg 2010-01-01
18 schema:description In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.
19 schema:editor N43ad63aef1824b9786ac003ffd4f28a5
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nb51c0f48344b4130bd9adbd1d618e5f7
24 schema:name Mutant Zhuang-Zi Algorithm
25 schema:pagination 28-40
26 schema:productId N65de1cefcc8e4acf8f9b93d99a4b8378
27 N7e3433e6d1ac4bd39c3b7eb490274f61
28 Ncab5564901d940f08f3cc4776d81b52a
29 schema:publisher N3180fcc838b04642a7b7e501137ff95f
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026065552
31 https://doi.org/10.1007/978-3-642-12929-2_3
32 schema:sdDatePublished 2019-04-16T08:01
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nf66b0c29b86a4cb29f5961bdc7a9004e
35 schema:url https://link.springer.com/10.1007%2F978-3-642-12929-2_3
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N3180fcc838b04642a7b7e501137ff95f schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N43ad63aef1824b9786ac003ffd4f28a5 rdf:first Nf99dedd0075142f39b25f83d6e07b6c7
43 rdf:rest rdf:nil
44 N6513701648f341d98d622643ddf95c29 rdf:first sg:person.015464666561.44
45 rdf:rest rdf:nil
46 N65de1cefcc8e4acf8f9b93d99a4b8378 schema:name doi
47 schema:value 10.1007/978-3-642-12929-2_3
48 rdf:type schema:PropertyValue
49 N7e3433e6d1ac4bd39c3b7eb490274f61 schema:name dimensions_id
50 schema:value pub.1026065552
51 rdf:type schema:PropertyValue
52 Nb51c0f48344b4130bd9adbd1d618e5f7 schema:isbn 978-3-642-12928-5
53 978-3-642-12929-2
54 schema:name Post-Quantum Cryptography
55 rdf:type schema:Book
56 Ncab5564901d940f08f3cc4776d81b52a schema:name readcube_id
57 schema:value 7c2cc6f5407a21008398b881962964859b77d6d3f185eecd09d226ea061110ca
58 rdf:type schema:PropertyValue
59 Ne282bec49eae436287aec6f4f50d23a1 rdf:first sg:person.010723403013.04
60 rdf:rest N6513701648f341d98d622643ddf95c29
61 Nf66b0c29b86a4cb29f5961bdc7a9004e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf99dedd0075142f39b25f83d6e07b6c7 schema:familyName Sendrier
64 schema:givenName Nicolas
65 rdf:type schema:Person
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.010723403013.04 schema:affiliation https://www.grid.ac/institutes/grid.466112.6
73 schema:familyName Ding
74 schema:givenName Jintai
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04
76 rdf:type schema:Person
77 sg:person.015464666561.44 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
78 schema:familyName Schmidt
79 schema:givenName Dieter S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44
81 rdf:type schema:Person
82 sg:pub.10.1007/3-540-45539-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285811
83 https://doi.org/10.1007/3-540-45539-6_27
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/3-540-45961-8_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601256
86 https://doi.org/10.1007/3-540-45961-8_39
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/3-540-48405-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045972569
89 https://doi.org/10.1007/3-540-48405-1_2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-0-387-36946-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026168664
92 https://doi.org/10.1007/978-0-387-36946-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-88403-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000585614
95 https://doi.org/10.1007/978-3-540-88403-3_14
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-642-14423-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918753
98 https://doi.org/10.1007/978-3-642-14423-3_7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/b102438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017119496
101 https://doi.org/10.1007/b102438
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1008341625464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711662
104 https://doi.org/10.1023/a:1008341625464
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1017119496 schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1026168664 schema:CreativeWork
108 https://doi.org/10.1016/s0022-4049(99)00005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040947089
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/780506.780516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007436250
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
113 schema:name Department of Computer Science, University of Cincinnati, 45220, Cincinnati, OH, USA
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.466112.6 schema:alternateName Department of Mathematical Sciences
116 schema:name Department of Mathematical Sciences
117 Department of Mathematics, Southern Chinese University of Technology
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...