Mutant Zhuang-Zi Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Jintai Ding , Dieter S. Schmidt

ABSTRACT

In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.

PAGES

28-40

Book

TITLE

Post-Quantum Cryptography

ISBN

978-3-642-12928-5
978-3-642-12929-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3

DOI

http://dx.doi.org/10.1007/978-3-642-12929-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026065552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.466112.6", 
          "name": [
            "Department of Mathematical Sciences", 
            "Department of Mathematics, Southern Chinese University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jintai", 
        "id": "sg:person.010723403013.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Computer Science, University of Cincinnati, 45220, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Dieter S.", 
        "id": "sg:person.015464666561.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45539-6_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000285811", 
          "https://doi.org/10.1007/3-540-45539-6_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88403-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585614", 
          "https://doi.org/10.1007/978-3-540-88403-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88403-3_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000585614", 
          "https://doi.org/10.1007/978-3-540-88403-3_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/780506.780516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007436250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017119496", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b102438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017119496", 
          "https://doi.org/10.1007/b102438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b102438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017119496", 
          "https://doi.org/10.1007/b102438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-36946-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026168664", 
          "https://doi.org/10.1007/978-0-387-36946-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1026168664", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45961-8_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035601256", 
          "https://doi.org/10.1007/3-540-45961-8_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4049(99)00005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040947089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14423-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918753", 
          "https://doi.org/10.1007/978-3-642-14423-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14423-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918753", 
          "https://doi.org/10.1007/978-3-642-14423-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008341625464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044711662", 
          "https://doi.org/10.1023/a:1008341625464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48405-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045972569", 
          "https://doi.org/10.1007/3-540-48405-1_2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.", 
    "editor": [
      {
        "familyName": "Sendrier", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-12929-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-12928-5", 
        "978-3-642-12929-2"
      ], 
      "name": "Post-Quantum Cryptography", 
      "type": "Book"
    }, 
    "name": "Mutant Zhuang-Zi Algorithm", 
    "pagination": "28-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026065552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-12929-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c2cc6f5407a21008398b881962964859b77d6d3f185eecd09d226ea061110ca"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-12929-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1026065552"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29194_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-12929-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12929-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-12929-2_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N482f9387182e4892adc02438e780b375
4 schema:citation sg:pub.10.1007/3-540-45539-6_27
5 sg:pub.10.1007/3-540-45961-8_39
6 sg:pub.10.1007/3-540-48405-1_2
7 sg:pub.10.1007/978-0-387-36946-4
8 sg:pub.10.1007/978-3-540-88403-3_14
9 sg:pub.10.1007/978-3-642-14423-3_7
10 sg:pub.10.1007/b102438
11 sg:pub.10.1023/a:1008341625464
12 https://app.dimensions.ai/details/publication/pub.1017119496
13 https://app.dimensions.ai/details/publication/pub.1026168664
14 https://doi.org/10.1016/s0022-4049(99)00005-5
15 https://doi.org/10.1145/780506.780516
16 schema:datePublished 2010
17 schema:datePublishedReg 2010-01-01
18 schema:description In this paper we present a new variant of the Zhuang-Zi algorithm, which solves multivariate polynomial equations over a finite field by converting it into a single variable problem over a large extension field. The improvement is based on the newly developed concept of mutant in solving multivariate equations.
19 schema:editor N8c27cdb4d8ff488b9eb124e5fa3e8582
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nc2c48f17135645e7938e516cb04fb818
24 schema:name Mutant Zhuang-Zi Algorithm
25 schema:pagination 28-40
26 schema:productId N6ae49acc2f804ec8a1a745c86a33bfaa
27 Nf1544151b85848d2981f241b10bb8557
28 Nfd3504eb14e4463c9944e14776a5fd99
29 schema:publisher N8e81f54c686b47b19af6329f1d589d95
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026065552
31 https://doi.org/10.1007/978-3-642-12929-2_3
32 schema:sdDatePublished 2019-04-16T08:01
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ndf3e7a4d9e884eefb347de949d1af069
35 schema:url https://link.springer.com/10.1007%2F978-3-642-12929-2_3
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N482f9387182e4892adc02438e780b375 rdf:first sg:person.010723403013.04
40 rdf:rest Nd6db27f66e8b49ec8e84690de2493712
41 N6ae49acc2f804ec8a1a745c86a33bfaa schema:name dimensions_id
42 schema:value pub.1026065552
43 rdf:type schema:PropertyValue
44 N82c4a885409c44f7b67119a3207d48ac schema:familyName Sendrier
45 schema:givenName Nicolas
46 rdf:type schema:Person
47 N8c27cdb4d8ff488b9eb124e5fa3e8582 rdf:first N82c4a885409c44f7b67119a3207d48ac
48 rdf:rest rdf:nil
49 N8e81f54c686b47b19af6329f1d589d95 schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 Nc2c48f17135645e7938e516cb04fb818 schema:isbn 978-3-642-12928-5
53 978-3-642-12929-2
54 schema:name Post-Quantum Cryptography
55 rdf:type schema:Book
56 Nd6db27f66e8b49ec8e84690de2493712 rdf:first sg:person.015464666561.44
57 rdf:rest rdf:nil
58 Ndf3e7a4d9e884eefb347de949d1af069 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nf1544151b85848d2981f241b10bb8557 schema:name readcube_id
61 schema:value 7c2cc6f5407a21008398b881962964859b77d6d3f185eecd09d226ea061110ca
62 rdf:type schema:PropertyValue
63 Nfd3504eb14e4463c9944e14776a5fd99 schema:name doi
64 schema:value 10.1007/978-3-642-12929-2_3
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.010723403013.04 schema:affiliation https://www.grid.ac/institutes/grid.466112.6
73 schema:familyName Ding
74 schema:givenName Jintai
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04
76 rdf:type schema:Person
77 sg:person.015464666561.44 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
78 schema:familyName Schmidt
79 schema:givenName Dieter S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44
81 rdf:type schema:Person
82 sg:pub.10.1007/3-540-45539-6_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000285811
83 https://doi.org/10.1007/3-540-45539-6_27
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/3-540-45961-8_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601256
86 https://doi.org/10.1007/3-540-45961-8_39
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/3-540-48405-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045972569
89 https://doi.org/10.1007/3-540-48405-1_2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-0-387-36946-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026168664
92 https://doi.org/10.1007/978-0-387-36946-4
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-88403-3_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000585614
95 https://doi.org/10.1007/978-3-540-88403-3_14
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-642-14423-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918753
98 https://doi.org/10.1007/978-3-642-14423-3_7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/b102438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017119496
101 https://doi.org/10.1007/b102438
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1008341625464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711662
104 https://doi.org/10.1023/a:1008341625464
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1017119496 schema:CreativeWork
107 https://app.dimensions.ai/details/publication/pub.1026168664 schema:CreativeWork
108 https://doi.org/10.1016/s0022-4049(99)00005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040947089
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/780506.780516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007436250
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
113 schema:name Department of Computer Science, University of Cincinnati, 45220, Cincinnati, OH, USA
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.466112.6 schema:alternateName Department of Mathematical Sciences
116 schema:name Department of Mathematical Sciences
117 Department of Mathematics, Southern Chinese University of Technology
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...