WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Ahmedur Rahman , C. I. Ezeife , A. K. Aggarwal

ABSTRACT

Intrusion detection in wireless networks has become a vital part in wireless network security systems with wide spread use of Wireless Local Area Networks (WLAN). Currently, almost all devices are Wi-Fi (Wireless Fidelity) capable and can access WLAN. This paper proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms. The proposed system, WiFi Miner solution approach is to find frequent and infrequent patterns on pre-processed wireless connection records using infrequent pattern finding Apriori algorithm proposed by this paper. The proposed Online Apriori-Infrequent algorithm improves the join and prune step of the traditional Apriori algorithm with a rule that avoids joining itemsets not likely to produce frequent itemsets as their results, there by improving efficiency and run times significantly. An anomaly score is assigned to each packet (record) based on whether the record has more frequent or infrequent patterns. Connection records with positive anomaly scores have more infrequent patterns than frequent patterns and are considered anomalous packets. More... »

PAGES

76-93

References to SciGraph publications

Book

TITLE

Knowledge Discovery from Sensor Data

ISBN

978-3-642-12518-8
978-3-642-12519-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-12519-5_5

DOI

http://dx.doi.org/10.1007/978-3-642-12519-5_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050430672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahman", 
        "givenName": "Ahmedur", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezeife", 
        "givenName": "C. I.", 
        "id": "sg:person.01200460536.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Windsor", 
          "id": "https://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aggarwal", 
        "givenName": "A. K.", 
        "id": "sg:person.014021066477.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014021066477.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009796218281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011497512", 
          "https://doi.org/10.1023/a:1009796218281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000005258.31418.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019489501", 
          "https://doi.org/10.1023/b:dami.0000005258.31418.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/604264.604268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025255762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/382912.382914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026096565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/170035.170072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028726331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1330598.1330631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048557395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijwmc.2007.013794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067504449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2003.1250987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093663377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ictai.2005.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094656724"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Intrusion detection in wireless networks has become a vital part in wireless network security systems with wide spread use of Wireless Local Area Networks (WLAN). Currently, almost all devices are Wi-Fi (Wireless Fidelity) capable and can access WLAN. This paper proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms. The proposed system, WiFi Miner solution approach is to find frequent and infrequent patterns on pre-processed wireless connection records using infrequent pattern finding Apriori algorithm proposed by this paper. The proposed Online Apriori-Infrequent algorithm improves the join and prune step of the traditional Apriori algorithm with a rule that avoids joining itemsets not likely to produce frequent itemsets as their results, there by improving efficiency and run times significantly. An anomaly score is assigned to each packet (record) based on whether the record has more frequent or infrequent patterns. Connection records with positive anomaly scores have more infrequent patterns than frequent patterns and are considered anomalous packets.", 
    "editor": [
      {
        "familyName": "Gaber", 
        "givenName": "Mohamed Medhat", 
        "type": "Person"
      }, 
      {
        "familyName": "Vatsavai", 
        "givenName": "Ranga Raju", 
        "type": "Person"
      }, 
      {
        "familyName": "Omitaomu", 
        "givenName": "Olufemi A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Chawla", 
        "givenName": "Nitesh V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ganguly", 
        "givenName": "Auroop R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-12519-5_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-12518-8", 
        "978-3-642-12519-5"
      ], 
      "name": "Knowledge Discovery from Sensor Data", 
      "type": "Book"
    }, 
    "name": "WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System", 
    "pagination": "76-93", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-12519-5_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f03c3597ffbdfa0d621c4266eb75d57e31caceeec369bf3b1e7ca42a2ee5d002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050430672"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-12519-5_5", 
      "https://app.dimensions.ai/details/publication/pub.1050430672"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000274.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-12519-5_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12519-5_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12519-5_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12519-5_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12519-5_5'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-12519-5_5 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Ned530b7b103d4ae28134e3ac293f6c47
4 schema:citation sg:pub.10.1023/a:1009796218281
5 sg:pub.10.1023/b:dami.0000005258.31418.83
6 https://doi.org/10.1109/icdm.2003.1250987
7 https://doi.org/10.1109/ictai.2005.5
8 https://doi.org/10.1145/1330598.1330631
9 https://doi.org/10.1145/170035.170072
10 https://doi.org/10.1145/382912.382914
11 https://doi.org/10.1145/604264.604268
12 https://doi.org/10.1504/ijwmc.2007.013794
13 schema:datePublished 2010
14 schema:datePublishedReg 2010-01-01
15 schema:description Intrusion detection in wireless networks has become a vital part in wireless network security systems with wide spread use of Wireless Local Area Networks (WLAN). Currently, almost all devices are Wi-Fi (Wireless Fidelity) capable and can access WLAN. This paper proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms. The proposed system, WiFi Miner solution approach is to find frequent and infrequent patterns on pre-processed wireless connection records using infrequent pattern finding Apriori algorithm proposed by this paper. The proposed Online Apriori-Infrequent algorithm improves the join and prune step of the traditional Apriori algorithm with a rule that avoids joining itemsets not likely to produce frequent itemsets as their results, there by improving efficiency and run times significantly. An anomaly score is assigned to each packet (record) based on whether the record has more frequent or infrequent patterns. Connection records with positive anomaly scores have more infrequent patterns than frequent patterns and are considered anomalous packets.
16 schema:editor N434946282c6249ebb07df927659841f2
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N47bd027fb3ac4730a202415b8b3f145a
21 schema:name WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System
22 schema:pagination 76-93
23 schema:productId N572c95aa0a2a43599d9232ffd25a6348
24 N656e7d9ff61740108ea64730125c3c3d
25 Nd74896e0f73c4d9889d5d43173868196
26 schema:publisher N9a01462b612e465284971e1a61793d39
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050430672
28 https://doi.org/10.1007/978-3-642-12519-5_5
29 schema:sdDatePublished 2019-04-15T19:12
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nedb040f50a724327949894c6bfb4424c
32 schema:url http://link.springer.com/10.1007/978-3-642-12519-5_5
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N04467be408a4422caf5a1c58ce430815 schema:familyName Ganguly
37 schema:givenName Auroop R.
38 rdf:type schema:Person
39 N12b4a29a4f8341938de371d8054685d8 schema:familyName Chawla
40 schema:givenName Nitesh V.
41 rdf:type schema:Person
42 N29ba072937ad47c9b0e6b246ac737689 rdf:first Ne54cc3ec067c4101be266f826f89d117
43 rdf:rest N725761349545481cac1e413370930782
44 N434946282c6249ebb07df927659841f2 rdf:first N5929d94f796f4fa8adf97f45ab5a106a
45 rdf:rest Ndf8033e6b2df4e7e84a7e1688792f8d6
46 N47bd027fb3ac4730a202415b8b3f145a schema:isbn 978-3-642-12518-8
47 978-3-642-12519-5
48 schema:name Knowledge Discovery from Sensor Data
49 rdf:type schema:Book
50 N494a0e6aace54219aadca7ef3e98b7ae rdf:first N04467be408a4422caf5a1c58ce430815
51 rdf:rest rdf:nil
52 N572c95aa0a2a43599d9232ffd25a6348 schema:name dimensions_id
53 schema:value pub.1050430672
54 rdf:type schema:PropertyValue
55 N5929d94f796f4fa8adf97f45ab5a106a schema:familyName Gaber
56 schema:givenName Mohamed Medhat
57 rdf:type schema:Person
58 N5a60853dda85499a994829d23fe2a0f3 rdf:first sg:person.014021066477.16
59 rdf:rest rdf:nil
60 N656e7d9ff61740108ea64730125c3c3d schema:name readcube_id
61 schema:value f03c3597ffbdfa0d621c4266eb75d57e31caceeec369bf3b1e7ca42a2ee5d002
62 rdf:type schema:PropertyValue
63 N67b3606851ba4e4d9c9317a6a34a2723 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
64 schema:familyName Rahman
65 schema:givenName Ahmedur
66 rdf:type schema:Person
67 N725761349545481cac1e413370930782 rdf:first N85a58e08b49b4fc3b8b92b01a1ffcd74
68 rdf:rest Nc7d19449044a4396872ecbd9291e9b5a
69 N85a58e08b49b4fc3b8b92b01a1ffcd74 schema:familyName Gama
70 schema:givenName João
71 rdf:type schema:Person
72 N9a01462b612e465284971e1a61793d39 schema:location Berlin, Heidelberg
73 schema:name Springer Berlin Heidelberg
74 rdf:type schema:Organisation
75 Nc5351e441c264a5caa080f81b6e21938 schema:familyName Vatsavai
76 schema:givenName Ranga Raju
77 rdf:type schema:Person
78 Nc7d19449044a4396872ecbd9291e9b5a rdf:first N12b4a29a4f8341938de371d8054685d8
79 rdf:rest N494a0e6aace54219aadca7ef3e98b7ae
80 Nd74896e0f73c4d9889d5d43173868196 schema:name doi
81 schema:value 10.1007/978-3-642-12519-5_5
82 rdf:type schema:PropertyValue
83 Ndf8033e6b2df4e7e84a7e1688792f8d6 rdf:first Nc5351e441c264a5caa080f81b6e21938
84 rdf:rest N29ba072937ad47c9b0e6b246ac737689
85 Ne54cc3ec067c4101be266f826f89d117 schema:familyName Omitaomu
86 schema:givenName Olufemi A.
87 rdf:type schema:Person
88 Ned530b7b103d4ae28134e3ac293f6c47 rdf:first N67b3606851ba4e4d9c9317a6a34a2723
89 rdf:rest Nfeced9c2030848999b9979a3c77eb991
90 Nedb040f50a724327949894c6bfb4424c schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nfeced9c2030848999b9979a3c77eb991 rdf:first sg:person.01200460536.41
93 rdf:rest N5a60853dda85499a994829d23fe2a0f3
94 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
95 schema:name Technology
96 rdf:type schema:DefinedTerm
97 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
98 schema:name Communications Technologies
99 rdf:type schema:DefinedTerm
100 sg:person.01200460536.41 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
101 schema:familyName Ezeife
102 schema:givenName C. I.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200460536.41
104 rdf:type schema:Person
105 sg:person.014021066477.16 schema:affiliation https://www.grid.ac/institutes/grid.267455.7
106 schema:familyName Aggarwal
107 schema:givenName A. K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014021066477.16
109 rdf:type schema:Person
110 sg:pub.10.1023/a:1009796218281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011497512
111 https://doi.org/10.1023/a:1009796218281
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/b:dami.0000005258.31418.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019489501
114 https://doi.org/10.1023/b:dami.0000005258.31418.83
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/icdm.2003.1250987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093663377
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/ictai.2005.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094656724
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1330598.1330631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048557395
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/382912.382914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026096565
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/604264.604268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025255762
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1504/ijwmc.2007.013794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067504449
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.267455.7 schema:alternateName University of Windsor
131 schema:name School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...