How an Agent Can Detect and Use Synchrony Parameter of Its Own Interaction with a Human? View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2010

AUTHORS

Ken Prepin , Philippe Gaussier

ABSTRACT

Synchrony is claimed by psychology as a crucial parameter of any social interaction: to give to human a feeling of natural interaction, a feeling of agency [17], an agent must be able to synchronise with this human on appropriate time [29] [11] [15] [16] [27]. In the following experiment, we show that synchrony can be more than a state to reach during interaction, it can be a useable cue of the human’s satisfaction and level of engagement concerning the ongoing interaction: the better is the interaction, the more synchronous with the agent is the human. We built an architecture that can acquire a human partner’s level of synchrony and use this parameter to adapt the agent behavior. This architecture detects temporal relation [1] existing between the actions of the agent and the actions of the human. We used this detected level of synchrony as reinforcement for learning [6]: the more constant the temporal relation between agent and human remains, the more positive is the reinforcement, conversely if the temporal relation varies above a threshold the reinforcement is negative. In a teaching task, this architecture enables naive humans to make the agent learn left-right associations just by the mean of intuitive interactions. The convergence of this learning reinforced by synchrony shows that synchrony conveys current information concerning human satisfaction and that we are able to extract and reuse this information to adapt the agent behavior appropriately. More... »

PAGES

50-65

References to SciGraph publications

  • 2009. Social Coordination, from the Perspective of Coordination Dynamics in ENCYCLOPEDIA OF COMPLEXITY AND SYSTEMS SCIENCE
  • Book

    TITLE

    Development of Multimodal Interfaces: Active Listening and Synchrony

    ISBN

    978-3-642-12396-2
    978-3-642-12397-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-12397-9_4

    DOI

    http://dx.doi.org/10.1007/978-3-642-12397-9_4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011462446


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Cergy-Pontoise University", 
              "id": "https://www.grid.ac/institutes/grid.7901.f", 
              "name": [
                "LTCI lab, CNRS, Telecom-ParisTech 46 rue Barrault, 75013, Paris, France", 
                "Neurocybernetic team, ETIS lab Cergy-Pontoise University, 2, avenue Adolphe-Chauvin, Pontoise, 95302, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prepin", 
            "givenName": "Ken", 
            "id": "sg:person.012472563015.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cergy-Pontoise University", 
              "id": "https://www.grid.ac/institutes/grid.7901.f", 
              "name": [
                "Neurocybernetic team, ETIS lab Cergy-Pontoise University, 2, avenue Adolphe-Chauvin, Pontoise, 95302, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaussier", 
            "givenName": "Philippe", 
            "id": "sg:person.01041272554.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1097/00005053-196610000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000123599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00005053-196610000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000123599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00005053-196610000-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000123599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15327078in1002_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003086537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.brainresrev.2005.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.brainresrev.2005.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006493221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0611453104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011976044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3200/jmbr.40.1.3-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014565903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1163/156855307782506192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026460353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-8890(97)80708-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030258636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0096-1523.31.1.62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030526221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.humov.2007.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032298148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-4115(97)80121-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038179048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-7138(09)62273-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039800666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17470910701563392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043002288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30440-3_486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043596308", 
              "https://doi.org/10.1007/978-0-387-30440-3_486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/jocn.1996.8.3.257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045762542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/sls.1976.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047111792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3468.952717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157851"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "Synchrony is claimed by psychology as a crucial parameter of any social interaction: to give to human a feeling of natural interaction, a feeling of agency [17], an agent must be able to synchronise with this human on appropriate time [29] [11] [15] [16] [27]. In the following experiment, we show that synchrony can be more than a state to reach during interaction, it can be a useable cue of the human\u2019s satisfaction and level of engagement concerning the ongoing interaction: the better is the interaction, the more synchronous with the agent is the human. We built an architecture that can acquire a human partner\u2019s level of synchrony and use this parameter to adapt the agent behavior. This architecture detects temporal relation [1] existing between the actions of the agent and the actions of the human. We used this detected level of synchrony as reinforcement for learning [6]: the more constant the temporal relation between agent and human remains, the more positive is the reinforcement, conversely if the temporal relation varies above a threshold the reinforcement is negative. In a teaching task, this architecture enables naive humans to make the agent learn left-right associations just by the mean of intuitive interactions. The convergence of this learning reinforced by synchrony shows that synchrony conveys current information concerning human satisfaction and that we are able to extract and reuse this information to adapt the agent behavior appropriately.", 
        "editor": [
          {
            "familyName": "Esposito", 
            "givenName": "Anna", 
            "type": "Person"
          }, 
          {
            "familyName": "Campbell", 
            "givenName": "Nick", 
            "type": "Person"
          }, 
          {
            "familyName": "Vogel", 
            "givenName": "Carl", 
            "type": "Person"
          }, 
          {
            "familyName": "Hussain", 
            "givenName": "Amir", 
            "type": "Person"
          }, 
          {
            "familyName": "Nijholt", 
            "givenName": "Anton", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-12397-9_4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-12396-2", 
            "978-3-642-12397-9"
          ], 
          "name": "Development of Multimodal Interfaces: Active Listening and Synchrony", 
          "type": "Book"
        }, 
        "name": "How an Agent Can Detect and Use Synchrony Parameter of Its Own Interaction with a Human?", 
        "pagination": "50-65", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011462446"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-12397-9_4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "369c904f1ec3844a5508555cbe7c9d239678ad1c048cddf98f253aa6fdff9b70"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-12397-9_4", 
          "https://app.dimensions.ai/details/publication/pub.1011462446"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99316_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-12397-9_4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12397-9_4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12397-9_4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12397-9_4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12397-9_4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-12397-9_4 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Nc316f70df135410f9e82280749fb62e6
    4 schema:citation sg:pub.10.1007/978-0-387-30440-3_486
    5 https://doi.org/10.1016/j.brainresrev.2005.04.005
    6 https://doi.org/10.1016/j.humov.2007.07.002
    7 https://doi.org/10.1016/s0002-7138(09)62273-1
    8 https://doi.org/10.1016/s0166-4115(97)80121-5
    9 https://doi.org/10.1016/s0921-8890(97)80708-7
    10 https://doi.org/10.1037/0096-1523.31.1.62
    11 https://doi.org/10.1073/pnas.0611453104
    12 https://doi.org/10.1080/17470910701563392
    13 https://doi.org/10.1097/00005053-196610000-00005
    14 https://doi.org/10.1109/3468.952717
    15 https://doi.org/10.1162/jocn.1996.8.3.257
    16 https://doi.org/10.1163/156855307782506192
    17 https://doi.org/10.1207/s15327078in1002_2
    18 https://doi.org/10.1353/sls.1976.0001
    19 https://doi.org/10.3200/jmbr.40.1.3-10
    20 schema:datePublished 2010
    21 schema:datePublishedReg 2010-01-01
    22 schema:description Synchrony is claimed by psychology as a crucial parameter of any social interaction: to give to human a feeling of natural interaction, a feeling of agency [17], an agent must be able to synchronise with this human on appropriate time [29] [11] [15] [16] [27]. In the following experiment, we show that synchrony can be more than a state to reach during interaction, it can be a useable cue of the human’s satisfaction and level of engagement concerning the ongoing interaction: the better is the interaction, the more synchronous with the agent is the human. We built an architecture that can acquire a human partner’s level of synchrony and use this parameter to adapt the agent behavior. This architecture detects temporal relation [1] existing between the actions of the agent and the actions of the human. We used this detected level of synchrony as reinforcement for learning [6]: the more constant the temporal relation between agent and human remains, the more positive is the reinforcement, conversely if the temporal relation varies above a threshold the reinforcement is negative. In a teaching task, this architecture enables naive humans to make the agent learn left-right associations just by the mean of intuitive interactions. The convergence of this learning reinforced by synchrony shows that synchrony conveys current information concerning human satisfaction and that we are able to extract and reuse this information to adapt the agent behavior appropriately.
    23 schema:editor Nff0fb0f4a8bd4ed9bb5717d718924d30
    24 schema:genre chapter
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N701f01f8de834d408497501073348ced
    28 schema:name How an Agent Can Detect and Use Synchrony Parameter of Its Own Interaction with a Human?
    29 schema:pagination 50-65
    30 schema:productId N256cdf9a9ec840f980cb16c4dfb9a6c6
    31 N4a3ae252689548f9bd1d08398d9d9c5c
    32 N5d81e8ddb9e548b9859eabf36e5cd8a9
    33 schema:publisher N810f9dcae3ee4aad8be946bd6bd942cd
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462446
    35 https://doi.org/10.1007/978-3-642-12397-9_4
    36 schema:sdDatePublished 2019-04-16T07:37
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N57a92d408c9b4d7b8d76fb54fe59230c
    39 schema:url https://link.springer.com/10.1007%2F978-3-642-12397-9_4
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset chapters
    42 rdf:type schema:Chapter
    43 N04c0c747009748bc98099c737c6495c9 rdf:first N4acecc742afe407caa786a3a23c383a4
    44 rdf:rest rdf:nil
    45 N15bc240abf914c3e94cbdbd4a8c91d22 rdf:first N1a07dc19927e4b5a90efe26b0a706c83
    46 rdf:rest Nc7a65b9970604578b46caf339b883e4a
    47 N1a07dc19927e4b5a90efe26b0a706c83 schema:familyName Vogel
    48 schema:givenName Carl
    49 rdf:type schema:Person
    50 N256cdf9a9ec840f980cb16c4dfb9a6c6 schema:name readcube_id
    51 schema:value 369c904f1ec3844a5508555cbe7c9d239678ad1c048cddf98f253aa6fdff9b70
    52 rdf:type schema:PropertyValue
    53 N26c6370914964a0495e70f1f8ceb4b73 schema:familyName Hussain
    54 schema:givenName Amir
    55 rdf:type schema:Person
    56 N4a3ae252689548f9bd1d08398d9d9c5c schema:name dimensions_id
    57 schema:value pub.1011462446
    58 rdf:type schema:PropertyValue
    59 N4acecc742afe407caa786a3a23c383a4 schema:familyName Nijholt
    60 schema:givenName Anton
    61 rdf:type schema:Person
    62 N57a92d408c9b4d7b8d76fb54fe59230c schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N5d81e8ddb9e548b9859eabf36e5cd8a9 schema:name doi
    65 schema:value 10.1007/978-3-642-12397-9_4
    66 rdf:type schema:PropertyValue
    67 N701f01f8de834d408497501073348ced schema:isbn 978-3-642-12396-2
    68 978-3-642-12397-9
    69 schema:name Development of Multimodal Interfaces: Active Listening and Synchrony
    70 rdf:type schema:Book
    71 N79bd01ad1e5b40adaa95fec88621d6ef schema:familyName Esposito
    72 schema:givenName Anna
    73 rdf:type schema:Person
    74 N810f9dcae3ee4aad8be946bd6bd942cd schema:location Berlin, Heidelberg
    75 schema:name Springer Berlin Heidelberg
    76 rdf:type schema:Organisation
    77 N85c9d785d0c446a69cd0f9386895bfe3 schema:familyName Campbell
    78 schema:givenName Nick
    79 rdf:type schema:Person
    80 N8ca9eab712d24f36b70e340d0b1092a5 rdf:first N85c9d785d0c446a69cd0f9386895bfe3
    81 rdf:rest N15bc240abf914c3e94cbdbd4a8c91d22
    82 N9597b346b0154e8e8eb2efc12f152574 rdf:first sg:person.01041272554.05
    83 rdf:rest rdf:nil
    84 Nc316f70df135410f9e82280749fb62e6 rdf:first sg:person.012472563015.17
    85 rdf:rest N9597b346b0154e8e8eb2efc12f152574
    86 Nc7a65b9970604578b46caf339b883e4a rdf:first N26c6370914964a0495e70f1f8ceb4b73
    87 rdf:rest N04c0c747009748bc98099c737c6495c9
    88 Nff0fb0f4a8bd4ed9bb5717d718924d30 rdf:first N79bd01ad1e5b40adaa95fec88621d6ef
    89 rdf:rest N8ca9eab712d24f36b70e340d0b1092a5
    90 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Psychology and Cognitive Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Psychology
    95 rdf:type schema:DefinedTerm
    96 sg:person.01041272554.05 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
    97 schema:familyName Gaussier
    98 schema:givenName Philippe
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05
    100 rdf:type schema:Person
    101 sg:person.012472563015.17 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
    102 schema:familyName Prepin
    103 schema:givenName Ken
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472563015.17
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-0-387-30440-3_486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043596308
    107 https://doi.org/10.1007/978-0-387-30440-3_486
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.brainresrev.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006493221
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.humov.2007.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298148
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0002-7138(09)62273-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039800666
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0166-4115(97)80121-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038179048
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0921-8890(97)80708-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030258636
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1037/0096-1523.31.1.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030526221
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1073/pnas.0611453104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011976044
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/17470910701563392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043002288
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1097/00005053-196610000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000123599
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/3468.952717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157851
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1162/jocn.1996.8.3.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045762542
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1163/156855307782506192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026460353
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1207/s15327078in1002_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003086537
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1353/sls.1976.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047111792
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.3200/jmbr.40.1.3-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014565903
    138 rdf:type schema:CreativeWork
    139 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
    140 schema:name LTCI lab, CNRS, Telecom-ParisTech 46 rue Barrault, 75013, Paris, France
    141 Neurocybernetic team, ETIS lab Cergy-Pontoise University, 2, avenue Adolphe-Chauvin, Pontoise, 95302, Cergy-Pontoise, France
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...