Risk Prediction for Postoperative Morbidity of Endovascular Aneurysm Repair Using Ensemble Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Nan-Chen Hsieh , Chien-Hui Chan , Hsin-Che Tsai

ABSTRACT

Endovascular aneurysm repair (EVAR) is an advanced minimally invasive surgical technology that is helpful for reducing patients’ recovery time and postoperative morbidity. This study proposes an ensemble model to predict postoperative morbidity after EVAR. The ensemble model was developed using a training set of consecutive patients who underwent EVAR between 2000 and 2008. The research outcomes consisted of an ensemble model to predict postoperative morbidity, the occurrence of postoperative complications prospectively recorded, and the causal-effect decision rules. The probabilities of complication calculated by the model were compared to the actual occurrence of complications and a receiver operating characteristic (ROC) curve was used to evaluate the accuracy of postoperative morbidity prediction. In this series, the ensemble of BN, NN and SVM models offered satisfactory performance in predicting postoperative morbidity after EVAR. Moreover, the Markov blankets of BN allow a natural form of causal-effect feature selection, which provides a basis for screening decision rules generated by granular computing. More... »

PAGES

526-540

Book

TITLE

Computational Science and Its Applications – ICCSA 2010

ISBN

978-3-642-12178-4
978-3-642-12179-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-12179-1_43

DOI

http://dx.doi.org/10.1007/978-3-642-12179-1_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028296215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Taipei University of Nursing and Health Science", 
          "id": "https://www.grid.ac/institutes/grid.412146.4", 
          "name": [
            "Department of Information Management, National Taipei College of Nursing, No. 365, Min-Ten Road, 11257, Taipei, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "Nan-Chen", 
        "id": "sg:person.012734774203.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734774203.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tamkang University", 
          "id": "https://www.grid.ac/institutes/grid.264580.d", 
          "name": [
            "Department of Computer Science and Information Engineering, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, 25137, Taipei County, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Chien-Hui", 
        "id": "sg:person.01047415075.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047415075.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taipei University of Nursing and Health Science", 
          "id": "https://www.grid.ac/institutes/grid.412146.4", 
          "name": [
            "Department of Information Management, National Taipei College of Nursing, No. 365, Min-Ten Road, 11257, Taipei, Taiwan, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Hsin-Che", 
        "id": "sg:person.010474006456.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474006456.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aml.2007.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001756005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2007.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012738523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.08.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014601930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-111x(199609)11:9<691::aid-int7>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015947095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsp.2006.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016302902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018735708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01001956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020579132", 
          "https://doi.org/10.1007/bf01001956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(02)00191-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022447897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2007.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026754255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2007.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031386906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejvs.2008.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042033992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejvs.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043666564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2007.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044970844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-2109(02)00081-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046387353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0967-2109(02)00081-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046387353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2003.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046512485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2006.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047293305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0195-668x(02)00799-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054625284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2006.884279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061636779"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Endovascular aneurysm repair (EVAR) is an advanced minimally invasive surgical technology that is helpful for reducing patients\u2019 recovery time and postoperative morbidity. This study proposes an ensemble model to predict postoperative morbidity after EVAR. The ensemble model was developed using a training set of consecutive patients who underwent EVAR between 2000 and 2008. The research outcomes consisted of an ensemble model to predict postoperative morbidity, the occurrence of postoperative complications prospectively recorded, and the causal-effect decision rules. The probabilities of complication calculated by the model were compared to the actual occurrence of complications and a receiver operating characteristic (ROC) curve was used to evaluate the accuracy of postoperative morbidity prediction. In this series, the ensemble of BN, NN and SVM models offered satisfactory performance in predicting postoperative morbidity after EVAR. Moreover, the Markov blankets of BN allow a natural form of causal-effect feature selection, which provides a basis for screening decision rules generated by granular computing.", 
    "editor": [
      {
        "familyName": "Taniar", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Gervasi", 
        "givenName": "Osvaldo", 
        "type": "Person"
      }, 
      {
        "familyName": "Murgante", 
        "givenName": "Beniamino", 
        "type": "Person"
      }, 
      {
        "familyName": "Pardede", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "familyName": "Apduhan", 
        "givenName": "Bernady O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-12179-1_43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-12178-4", 
        "978-3-642-12179-1"
      ], 
      "name": "Computational Science and Its Applications \u2013 ICCSA 2010", 
      "type": "Book"
    }, 
    "name": "Risk Prediction for Postoperative Morbidity of Endovascular Aneurysm Repair Using Ensemble Model", 
    "pagination": "526-540", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028296215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-12179-1_43"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86cc1d3e69f8bf3b309fb6fef8c79c7027da90cca3e0b39fb60c848cd462208f"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-12179-1_43", 
      "https://app.dimensions.ai/details/publication/pub.1028296215"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99305_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-12179-1_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12179-1_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12179-1_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12179-1_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12179-1_43'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-12179-1_43 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N1b1684c1970d4b339fc761b94d42b357
4 schema:citation sg:pub.10.1007/bf01001956
5 https://doi.org/10.1002/(sici)1098-111x(199609)11:9<691::aid-int7>3.0.co;2-f
6 https://doi.org/10.1016/j.aml.2007.05.010
7 https://doi.org/10.1016/j.artmed.2007.04.005
8 https://doi.org/10.1016/j.dsp.2006.10.008
9 https://doi.org/10.1016/j.ejvs.2007.12.003
10 https://doi.org/10.1016/j.ejvs.2008.03.007
11 https://doi.org/10.1016/j.eswa.2007.04.015
12 https://doi.org/10.1016/j.eswa.2007.08.078
13 https://doi.org/10.1016/j.eswa.2009.07.055
14 https://doi.org/10.1016/j.ijmedinf.2006.11.006
15 https://doi.org/10.1016/j.ins.2003.03.014
16 https://doi.org/10.1016/j.jbi.2007.06.001
17 https://doi.org/10.1016/j.jbi.2007.07.003
18 https://doi.org/10.1016/j.jbi.2007.07.004
19 https://doi.org/10.1016/s0004-3702(02)00191-1
20 https://doi.org/10.1016/s0195-668x(02)00799-6
21 https://doi.org/10.1016/s0967-2109(02)00081-9
22 https://doi.org/10.1109/tim.2006.884279
23 schema:datePublished 2010
24 schema:datePublishedReg 2010-01-01
25 schema:description Endovascular aneurysm repair (EVAR) is an advanced minimally invasive surgical technology that is helpful for reducing patients’ recovery time and postoperative morbidity. This study proposes an ensemble model to predict postoperative morbidity after EVAR. The ensemble model was developed using a training set of consecutive patients who underwent EVAR between 2000 and 2008. The research outcomes consisted of an ensemble model to predict postoperative morbidity, the occurrence of postoperative complications prospectively recorded, and the causal-effect decision rules. The probabilities of complication calculated by the model were compared to the actual occurrence of complications and a receiver operating characteristic (ROC) curve was used to evaluate the accuracy of postoperative morbidity prediction. In this series, the ensemble of BN, NN and SVM models offered satisfactory performance in predicting postoperative morbidity after EVAR. Moreover, the Markov blankets of BN allow a natural form of causal-effect feature selection, which provides a basis for screening decision rules generated by granular computing.
26 schema:editor Ndc28563b31244d03b224f42c8ba60b47
27 schema:genre chapter
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nce9972b545ce42ada1b11521f92a72f4
31 schema:name Risk Prediction for Postoperative Morbidity of Endovascular Aneurysm Repair Using Ensemble Model
32 schema:pagination 526-540
33 schema:productId N51df5e939c2543cbab687cfaa19b8e75
34 N9d353f5893094afcb41c9420bb208516
35 Nd473d98517d344cd812edb5134f129a6
36 schema:publisher N6002578e69a44aa2b3ad5b61af3bd50f
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028296215
38 https://doi.org/10.1007/978-3-642-12179-1_43
39 schema:sdDatePublished 2019-04-16T07:36
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N654e3f53d2db4a578b5095d63844c3c0
42 schema:url https://link.springer.com/10.1007%2F978-3-642-12179-1_43
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N0bcfb5f8ee76412d86607894a8b75401 schema:familyName Murgante
47 schema:givenName Beniamino
48 rdf:type schema:Person
49 N1b1684c1970d4b339fc761b94d42b357 rdf:first sg:person.012734774203.51
50 rdf:rest N676a740496e84a8bb41b07dcef96bafd
51 N34a8750099674c7c9ed4ed6500866545 rdf:first sg:person.010474006456.80
52 rdf:rest rdf:nil
53 N4a517c09d7d647b182ac097b0cbd8bf0 schema:familyName Gervasi
54 schema:givenName Osvaldo
55 rdf:type schema:Person
56 N504636d895cc419c9e8f76c650669c55 schema:familyName Apduhan
57 schema:givenName Bernady O.
58 rdf:type schema:Person
59 N51df5e939c2543cbab687cfaa19b8e75 schema:name dimensions_id
60 schema:value pub.1028296215
61 rdf:type schema:PropertyValue
62 N6002578e69a44aa2b3ad5b61af3bd50f schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 N654e3f53d2db4a578b5095d63844c3c0 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N676a740496e84a8bb41b07dcef96bafd rdf:first sg:person.01047415075.56
68 rdf:rest N34a8750099674c7c9ed4ed6500866545
69 N79bbb492ef4c409e811996660adf988e rdf:first N504636d895cc419c9e8f76c650669c55
70 rdf:rest rdf:nil
71 N9384ff4a77e1470bb70559c6e24ccfca rdf:first N0bcfb5f8ee76412d86607894a8b75401
72 rdf:rest Nb84d7a9d36884db9b12a105688f416ac
73 N9d353f5893094afcb41c9420bb208516 schema:name doi
74 schema:value 10.1007/978-3-642-12179-1_43
75 rdf:type schema:PropertyValue
76 Nac32304c8bf5412eb46c618ee2a333f7 rdf:first N4a517c09d7d647b182ac097b0cbd8bf0
77 rdf:rest N9384ff4a77e1470bb70559c6e24ccfca
78 Nad27e72874664f14869deb777c0e1d39 schema:familyName Pardede
79 schema:givenName Eric
80 rdf:type schema:Person
81 Nb84d7a9d36884db9b12a105688f416ac rdf:first Nad27e72874664f14869deb777c0e1d39
82 rdf:rest N79bbb492ef4c409e811996660adf988e
83 Nce9972b545ce42ada1b11521f92a72f4 schema:isbn 978-3-642-12178-4
84 978-3-642-12179-1
85 schema:name Computational Science and Its Applications – ICCSA 2010
86 rdf:type schema:Book
87 Nd473d98517d344cd812edb5134f129a6 schema:name readcube_id
88 schema:value 86cc1d3e69f8bf3b309fb6fef8c79c7027da90cca3e0b39fb60c848cd462208f
89 rdf:type schema:PropertyValue
90 Ndc28563b31244d03b224f42c8ba60b47 rdf:first Ndef82f44f16641e3a60cc26afbd3cd4d
91 rdf:rest Nac32304c8bf5412eb46c618ee2a333f7
92 Ndef82f44f16641e3a60cc26afbd3cd4d schema:familyName Taniar
93 schema:givenName David
94 rdf:type schema:Person
95 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
96 schema:name Medical and Health Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
99 schema:name Clinical Sciences
100 rdf:type schema:DefinedTerm
101 sg:person.010474006456.80 schema:affiliation https://www.grid.ac/institutes/grid.412146.4
102 schema:familyName Tsai
103 schema:givenName Hsin-Che
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474006456.80
105 rdf:type schema:Person
106 sg:person.01047415075.56 schema:affiliation https://www.grid.ac/institutes/grid.264580.d
107 schema:familyName Chan
108 schema:givenName Chien-Hui
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047415075.56
110 rdf:type schema:Person
111 sg:person.012734774203.51 schema:affiliation https://www.grid.ac/institutes/grid.412146.4
112 schema:familyName Hsieh
113 schema:givenName Nan-Chen
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734774203.51
115 rdf:type schema:Person
116 sg:pub.10.1007/bf01001956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020579132
117 https://doi.org/10.1007/bf01001956
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/(sici)1098-111x(199609)11:9<691::aid-int7>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1015947095
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.aml.2007.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001756005
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.artmed.2007.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754255
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.dsp.2006.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016302902
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ejvs.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666564
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ejvs.2008.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042033992
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.eswa.2007.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044970844
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.eswa.2007.08.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014601930
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.eswa.2009.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768189
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijmedinf.2006.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047293305
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ins.2003.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046512485
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jbi.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018735708
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jbi.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031386906
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jbi.2007.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012738523
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0004-3702(02)00191-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022447897
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0195-668x(02)00799-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054625284
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0967-2109(02)00081-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046387353
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tim.2006.884279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061636779
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.264580.d schema:alternateName Tamkang University
156 schema:name Department of Computer Science and Information Engineering, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, 25137, Taipei County, Taiwan, ROC
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.412146.4 schema:alternateName National Taipei University of Nursing and Health Science
159 schema:name Department of Information Management, National Taipei College of Nursing, No. 365, Min-Ten Road, 11257, Taipei, Taiwan, ROC
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...