Ontology type: schema:Chapter
2010
AUTHORSMarcus Furuholmen , Kyrre Glette , Mats Hovin , Jim Torresen
ABSTRACTIn this study, three Genetic Algorithms (GAs) are applied to the Three-dimensional Multi-pipe Routing problem. A Standard GA, an Incremental GA, and a Coevolutionary GA are compared. Variable length pipelines are built by letting a virtual robot move in space according to evolved, fixed length command lines and allocate pipe segments along its route. A relative and an absolute encoding of the command lines are compared. Experiments on three proposed benchmark problems show that the GAs taking advantage of the natural problem decomposition; Coevolutionary GA, and Incremental GA outperform Standard GA, and that the relative encoding works better than the absolute encoding. The methods, the results, and the relevant parameter settings are discussed. More... »
PAGES71-82
Evolutionary Computation in Combinatorial Optimization
ISBN
978-3-642-12138-8
978-3-642-12139-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-12139-5_7
DOIhttp://dx.doi.org/10.1007/978-3-642-12139-5_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003446658
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Aker Solutions (Norway)",
"id": "https://www.grid.ac/institutes/grid.457413.0",
"name": [
"Aker Solutions AS, P.O. Box 169, Snaroyveien 36, 1364, Fornebu, Norway"
],
"type": "Organization"
},
"familyName": "Furuholmen",
"givenName": "Marcus",
"id": "sg:person.010175744106.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175744106.77"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Informatics, University of Oslo, P.O. Box 1080, 0316, Blindern, Oslo, Norway"
],
"type": "Organization"
},
"familyName": "Glette",
"givenName": "Kyrre",
"id": "sg:person.013707341363.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707341363.42"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Informatics, University of Oslo, P.O. Box 1080, 0316, Blindern, Oslo, Norway"
],
"type": "Organization"
},
"familyName": "Hovin",
"givenName": "Mats",
"id": "sg:person.011032744211.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011032744211.33"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Informatics, University of Oslo, P.O. Box 1080, 0316, Blindern, Oslo, Norway"
],
"type": "Organization"
},
"familyName": "Torresen",
"givenName": "Jim",
"id": "sg:person.015401400130.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015401400130.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1162/106365600568086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003615653"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-3615(98)00130-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003756168"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008924832167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004928800",
"https://doi.org/10.1023/a:1008924832167"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3233/kes-2008-12302",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008961566"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compchemeng.2005.08.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012285891"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.asoc.2004.08.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017304061"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-58484-6_269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021652390",
"https://doi.org/10.1007/3-540-58484-6_269"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/800260.809014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026752189"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/105971239700500305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030498648"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/105971239700500305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030498648"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-34403-9_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032219772",
"https://doi.org/10.1007/0-387-34403-9_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-61723-x_1064",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037722413",
"https://doi.org/10.1007/3-540-61723-x_1064"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01386390",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041716633",
"https://doi.org/10.1007/bf01386390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0957-4174(02)00049-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043142397"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0957-4174(02)00049-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043142397"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1569901.1569997",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043344440"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1043679011",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-05094-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043679011",
"https://doi.org/10.1007/978-3-662-05094-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-05094-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043679011",
"https://doi.org/10.1007/978-3-662-05094-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0020-0190(02)00204-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045238653"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1143997.1144182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048291759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ms.2003.1241365",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061420361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/t-c.1974.224054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061456029"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tssc.1968.300136",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061806130"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cec.2009.4983295",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094921157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ccdc.2008.4598081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095081601"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "In this study, three Genetic Algorithms (GAs) are applied to the Three-dimensional Multi-pipe Routing problem. A Standard GA, an Incremental GA, and a Coevolutionary GA are compared. Variable length pipelines are built by letting a virtual robot move in space according to evolved, fixed length command lines and allocate pipe segments along its route. A relative and an absolute encoding of the command lines are compared. Experiments on three proposed benchmark problems show that the GAs taking advantage of the natural problem decomposition; Coevolutionary GA, and Incremental GA outperform Standard GA, and that the relative encoding works better than the absolute encoding. The methods, the results, and the relevant parameter settings are discussed.",
"editor": [
{
"familyName": "Cowling",
"givenName": "Peter",
"type": "Person"
},
{
"familyName": "Merz",
"givenName": "Peter",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-12139-5_7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-12138-8",
"978-3-642-12139-5"
],
"name": "Evolutionary Computation in Combinatorial Optimization",
"type": "Book"
},
"name": "Evolutionary Approaches to the Three-dimensional Multi-pipe Routing Problem: A Comparative Study Using Direct Encodings",
"pagination": "71-82",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003446658"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-12139-5_7"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"106b1b5b0e246eacb16f35715728a82ee945970a40529c5a9e509ade1087884d"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-12139-5_7",
"https://app.dimensions.ai/details/publication/pub.1003446658"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99330_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-12139-5_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12139-5_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12139-5_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12139-5_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12139-5_7'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
23 PREDICATES
50 URIs
20 LITERALS
8 BLANK NODES