Ontology type: schema:Chapter Open Access: True
2010
AUTHORSJoachim Selke , Christoph Lofi , Wolf-Tilo Balke
ABSTRACTUntil recently algorithms continuously gained free performance improvements due to ever increasing processor speeds. Unfortunately, this development has reached its limit. Nowadays, new generations of CPUs focus on increasing the number of processing cores instead of simply increasing the performance of a single core. Thus, sequential algorithms will be excluded from future technological advances. Instead, highly scalable parallel algorithms are needed to fully tap new hardware potentials. In this paper we establish a design space for parallel algorithms in the domain of personalized database retrieval, taking skyline algorithms as a representative example. We will investigate the spectrum of base operations of different retrieval algorithms and various parallelization techniques to develop a set of highly scalable and high-performing skyline algorithms for different retrieval scenarios. Finally, we extensively evaluate these algorithms to showcase their superior characteristics. More... »
PAGES246-260
Database Systems for Advanced Applications
ISBN
978-3-642-12097-8
978-3-642-12098-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-12098-5_19
DOIhttp://dx.doi.org/10.1007/978-3-642-12098-5_19
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026088860
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Selke",
"givenName": "Joachim",
"id": "sg:person.012152554345.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152554345.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Lofi",
"givenName": "Christoph",
"id": "sg:person.011355173745.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.6738.a",
"name": [
"Institut f\u00fcr Informationssysteme, Technische Universit\u00e4t Braunschweig, M\u00fchlenpfordtstra\u00dfe 23, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Balke",
"givenName": "Wolf-Tilo",
"id": "sg:person.014313642615.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12"
],
"type": "Person"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "Until recently algorithms continuously gained free performance improvements due to ever increasing processor speeds. Unfortunately, this development has reached its limit. Nowadays, new generations of CPUs focus on increasing the number of processing cores instead of simply increasing the performance of a single core. Thus, sequential algorithms will be excluded from future technological advances. Instead, highly scalable parallel algorithms are needed to fully tap new hardware potentials. In this paper we establish a design space for parallel algorithms in the domain of personalized database retrieval, taking skyline algorithms as a representative example. We will investigate the spectrum of base operations of different retrieval algorithms and various parallelization techniques to develop a set of highly scalable and high-performing skyline algorithms for different retrieval scenarios. Finally, we extensively evaluate these algorithms to showcase their superior characteristics.",
"editor": [
{
"familyName": "Kitagawa",
"givenName": "Hiroyuki",
"type": "Person"
},
{
"familyName": "Ishikawa",
"givenName": "Yoshiharu",
"type": "Person"
},
{
"familyName": "Li",
"givenName": "Qing",
"type": "Person"
},
{
"familyName": "Watanabe",
"givenName": "Chiemi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-12098-5_19",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-12097-8",
"978-3-642-12098-5"
],
"name": "Database Systems for Advanced Applications",
"type": "Book"
},
"keywords": [
"skyline algorithms",
"database retrieval",
"parallel algorithm",
"different retrieval scenarios",
"scalable parallel algorithm",
"retrieval scenarios",
"hardware potential",
"parallelization techniques",
"processing cores",
"processor speed",
"sequential algorithm",
"different retrieval algorithms",
"algorithm",
"base operations",
"single core",
"design space",
"performance improvement",
"retrieval algorithm",
"retrieval",
"CPU",
"new generation",
"technological advances",
"future technological advances",
"representative examples",
"scenarios",
"set",
"performance",
"operation",
"domain",
"speed",
"space",
"technique",
"example",
"core",
"advances",
"generation",
"improvement",
"superior characteristics",
"number",
"preferences",
"development",
"characteristics",
"potential",
"limit",
"spectra",
"paper"
],
"name": "Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval",
"pagination": "246-260",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026088860"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-12098-5_19"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-12098-5_19",
"https://app.dimensions.ai/details/publication/pub.1026088860"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_362.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-12098-5_19"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12098-5_19'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12098-5_19'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12098-5_19'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-12098-5_19'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
23 PREDICATES
72 URIs
65 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-12098-5_19 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N5d6fcf29885b4f888b499de786c6e129 |
4 | ″ | schema:datePublished | 2010 |
5 | ″ | schema:datePublishedReg | 2010-01-01 |
6 | ″ | schema:description | Until recently algorithms continuously gained free performance improvements due to ever increasing processor speeds. Unfortunately, this development has reached its limit. Nowadays, new generations of CPUs focus on increasing the number of processing cores instead of simply increasing the performance of a single core. Thus, sequential algorithms will be excluded from future technological advances. Instead, highly scalable parallel algorithms are needed to fully tap new hardware potentials. In this paper we establish a design space for parallel algorithms in the domain of personalized database retrieval, taking skyline algorithms as a representative example. We will investigate the spectrum of base operations of different retrieval algorithms and various parallelization techniques to develop a set of highly scalable and high-performing skyline algorithms for different retrieval scenarios. Finally, we extensively evaluate these algorithms to showcase their superior characteristics. |
7 | ″ | schema:editor | Nf1a3ec1bc2044e67bf00e2138826e8fb |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nd6816784d2a04e7993eac6ffed0f77dc |
12 | ″ | schema:keywords | CPU |
13 | ″ | ″ | advances |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | base operations |
16 | ″ | ″ | characteristics |
17 | ″ | ″ | core |
18 | ″ | ″ | database retrieval |
19 | ″ | ″ | design space |
20 | ″ | ″ | development |
21 | ″ | ″ | different retrieval algorithms |
22 | ″ | ″ | different retrieval scenarios |
23 | ″ | ″ | domain |
24 | ″ | ″ | example |
25 | ″ | ″ | future technological advances |
26 | ″ | ″ | generation |
27 | ″ | ″ | hardware potential |
28 | ″ | ″ | improvement |
29 | ″ | ″ | limit |
30 | ″ | ″ | new generation |
31 | ″ | ″ | number |
32 | ″ | ″ | operation |
33 | ″ | ″ | paper |
34 | ″ | ″ | parallel algorithm |
35 | ″ | ″ | parallelization techniques |
36 | ″ | ″ | performance |
37 | ″ | ″ | performance improvement |
38 | ″ | ″ | potential |
39 | ″ | ″ | preferences |
40 | ″ | ″ | processing cores |
41 | ″ | ″ | processor speed |
42 | ″ | ″ | representative examples |
43 | ″ | ″ | retrieval |
44 | ″ | ″ | retrieval algorithm |
45 | ″ | ″ | retrieval scenarios |
46 | ″ | ″ | scalable parallel algorithm |
47 | ″ | ″ | scenarios |
48 | ″ | ″ | sequential algorithm |
49 | ″ | ″ | set |
50 | ″ | ″ | single core |
51 | ″ | ″ | skyline algorithms |
52 | ″ | ″ | space |
53 | ″ | ″ | spectra |
54 | ″ | ″ | speed |
55 | ″ | ″ | superior characteristics |
56 | ″ | ″ | technique |
57 | ″ | ″ | technological advances |
58 | ″ | schema:name | Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval |
59 | ″ | schema:pagination | 246-260 |
60 | ″ | schema:productId | N4e4818783da745429c9f7c7293998dc9 |
61 | ″ | ″ | Nc16395224e034134863e400a16582304 |
62 | ″ | schema:publisher | N4e708178041e4ccea22cba987ef0bf53 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026088860 |
64 | ″ | ″ | https://doi.org/10.1007/978-3-642-12098-5_19 |
65 | ″ | schema:sdDatePublished | 2022-06-01T22:33 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N0d5726ba0f1e47da83d8cf9ac5960023 |
68 | ″ | schema:url | https://doi.org/10.1007/978-3-642-12098-5_19 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | chapters |
71 | ″ | rdf:type | schema:Chapter |
72 | N0ceb4282d71d4804a4d269de9cb01083 | rdf:first | Nb65d6214c483487ea458b56586a9c18b |
73 | ″ | rdf:rest | rdf:nil |
74 | N0d5726ba0f1e47da83d8cf9ac5960023 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N35542a0df408420bb7572e027879f0e1 | schema:familyName | Ishikawa |
77 | ″ | schema:givenName | Yoshiharu |
78 | ″ | rdf:type | schema:Person |
79 | N4e4818783da745429c9f7c7293998dc9 | schema:name | doi |
80 | ″ | schema:value | 10.1007/978-3-642-12098-5_19 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N4e708178041e4ccea22cba987ef0bf53 | schema:name | Springer Nature |
83 | ″ | rdf:type | schema:Organisation |
84 | N5d6fcf29885b4f888b499de786c6e129 | rdf:first | sg:person.012152554345.21 |
85 | ″ | rdf:rest | N685298e953cc49c78950ab5bc5d697cd |
86 | N685298e953cc49c78950ab5bc5d697cd | rdf:first | sg:person.011355173745.44 |
87 | ″ | rdf:rest | Nd6917179c9914af7bbf22776c786a709 |
88 | N71ee74eb21114496b05c8a50476e07b5 | rdf:first | N35542a0df408420bb7572e027879f0e1 |
89 | ″ | rdf:rest | N98061d717cb54dc89eb65885c484da05 |
90 | N7e5d3b11eaf44512914435fc94ce6f5b | schema:familyName | Li |
91 | ″ | schema:givenName | Qing |
92 | ″ | rdf:type | schema:Person |
93 | N98061d717cb54dc89eb65885c484da05 | rdf:first | N7e5d3b11eaf44512914435fc94ce6f5b |
94 | ″ | rdf:rest | N0ceb4282d71d4804a4d269de9cb01083 |
95 | Nb65d6214c483487ea458b56586a9c18b | schema:familyName | Watanabe |
96 | ″ | schema:givenName | Chiemi |
97 | ″ | rdf:type | schema:Person |
98 | Nc16395224e034134863e400a16582304 | schema:name | dimensions_id |
99 | ″ | schema:value | pub.1026088860 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nd6816784d2a04e7993eac6ffed0f77dc | schema:isbn | 978-3-642-12097-8 |
102 | ″ | ″ | 978-3-642-12098-5 |
103 | ″ | schema:name | Database Systems for Advanced Applications |
104 | ″ | rdf:type | schema:Book |
105 | Nd6917179c9914af7bbf22776c786a709 | rdf:first | sg:person.014313642615.12 |
106 | ″ | rdf:rest | rdf:nil |
107 | Nf1a3ec1bc2044e67bf00e2138826e8fb | rdf:first | Nf3b2c611562e415f9317f3e450f1755a |
108 | ″ | rdf:rest | N71ee74eb21114496b05c8a50476e07b5 |
109 | Nf3b2c611562e415f9317f3e450f1755a | schema:familyName | Kitagawa |
110 | ″ | schema:givenName | Hiroyuki |
111 | ″ | rdf:type | schema:Person |
112 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Information and Computing Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Artificial Intelligence and Image Processing |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.011355173745.44 | schema:affiliation | grid-institutes:grid.6738.a |
119 | ″ | schema:familyName | Lofi |
120 | ″ | schema:givenName | Christoph |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012152554345.21 | schema:affiliation | grid-institutes:grid.6738.a |
124 | ″ | schema:familyName | Selke |
125 | ″ | schema:givenName | Joachim |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152554345.21 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.014313642615.12 | schema:affiliation | grid-institutes:grid.6738.a |
129 | ″ | schema:familyName | Balke |
130 | ″ | schema:givenName | Wolf-Tilo |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.6738.a | schema:alternateName | Institut für Informationssysteme, Technische Universität Braunschweig, Mühlenpfordtstraße 23, Braunschweig, Germany |
134 | ″ | schema:name | Institut für Informationssysteme, Technische Universität Braunschweig, Mühlenpfordtstraße 23, Braunschweig, Germany |
135 | ″ | rdf:type | schema:Organization |