Passive Decoy State Quantum Key Distribution View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Marcos Curty , Tobias Moroder , Xiongfeng Ma , Norbert Lütkenhaus

ABSTRACT

The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods. More... »

PAGES

132-141

References to SciGraph publications

  • 1995-11. Underwater quantum coding in NATURE
  • 2005-04. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security in JOURNAL OF CRYPTOLOGY
  • 1992-01. Experimental quantum cryptography in JOURNAL OF CRYPTOLOGY
  • 2007-03. Unconditional security of practical quantum key distribution in THE EUROPEAN PHYSICAL JOURNAL D
  • Book

    TITLE

    Quantum Communication and Quantum Networking

    ISBN

    978-3-642-11730-5
    978-3-642-11731-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17

    DOI

    http://dx.doi.org/10.1007/978-3-642-11731-2_17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020767582


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Vigo", 
              "id": "https://www.grid.ac/institutes/grid.6312.6", 
              "name": [
                "Department of Signal Theory and Communications, ETSI Telecomunicaci\u00f3n, University of Vigo, E-36310, Vigo, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Curty", 
            "givenName": "Marcos", 
            "id": "sg:person.011116240401.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116240401.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Erlangen-Nuremberg", 
              "id": "https://www.grid.ac/institutes/grid.5330.5", 
              "name": [
                "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
                "Quantum Information Theory Group, Institut f\u00fcr Theoretische Physik I, and Max Planck Institute for the Science of Light, University of Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moroder", 
            "givenName": "Tobias", 
            "id": "sg:person.010654702601.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654702601.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Xiongfeng", 
            "id": "sg:person.01232050364.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232050364.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Erlangen-Nuremberg", 
              "id": "https://www.grid.ac/institutes/grid.5330.5", 
              "name": [
                "Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada", 
                "Quantum Information Theory Group, Institut f\u00fcr Theoretische Physik I, and Max Planck Institute for the Science of Light, University of Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fctkenhaus", 
            "givenName": "Norbert", 
            "id": "sg:person.01112452623.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112452623.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-004-0142-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010175559", 
              "https://doi.org/10.1007/s00145-004-0142-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.180503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011935734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.180503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011935734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.010503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013121074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.010503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013121074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.230503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017687775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.230503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017687775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/10/7/073018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019373290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.230504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020143779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.230504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020143779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1738173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024644718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.057901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025620862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.057901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025620862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500340008244058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025884882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.070502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028002981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.070502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028002981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.1863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029956256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.1863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029956256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.1301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037495359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.1301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037495359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378449a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037706351", 
              "https://doi.org/10.1038/378449a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.75.050305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045281998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.75.050305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045281998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2007-00010-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047127008", 
              "https://doi.org/10.1140/epjd/e2007-00010-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047714332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047714332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.72.012326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048022032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.72.012326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048022032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500340600578369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048102357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.010504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060833332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.010504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060833332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.20.001695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065216161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.34.003238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065227820"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods.", 
        "editor": [
          {
            "familyName": "Sergienko", 
            "givenName": "Alexander", 
            "type": "Person"
          }, 
          {
            "familyName": "Pascazio", 
            "givenName": "Saverio", 
            "type": "Person"
          }, 
          {
            "familyName": "Villoresi", 
            "givenName": "Paolo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-11731-2_17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-11730-5", 
            "978-3-642-11731-2"
          ], 
          "name": "Quantum Communication and Quantum Networking", 
          "type": "Book"
        }, 
        "name": "Passive Decoy State Quantum Key Distribution", 
        "pagination": "132-141", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020767582"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-11731-2_17"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "62f40a42cd118ff153660eb0d73edbfe6a9db0002baaf5688c914ca63863af38"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-11731-2_17", 
          "https://app.dimensions.ai/details/publication/pub.1020767582"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57871_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-11731-2_17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-11731-2_17 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N64af1f19fd4e4c59b85253fa5f0c21b4
    4 schema:citation sg:pub.10.1007/bf00191318
    5 sg:pub.10.1007/s00145-004-0142-y
    6 sg:pub.10.1038/378449a0
    7 sg:pub.10.1140/epjd/e2007-00010-4
    8 https://doi.org/10.1063/1.1738173
    9 https://doi.org/10.1080/09500340008244058
    10 https://doi.org/10.1080/09500340600578369
    11 https://doi.org/10.1088/1367-2630/10/7/073018
    12 https://doi.org/10.1103/physreva.51.1863
    13 https://doi.org/10.1103/physreva.72.012326
    14 https://doi.org/10.1103/physreva.75.050305
    15 https://doi.org/10.1103/physrevlett.85.1330
    16 https://doi.org/10.1103/physrevlett.91.057901
    17 https://doi.org/10.1103/physrevlett.94.230503
    18 https://doi.org/10.1103/physrevlett.94.230504
    19 https://doi.org/10.1103/physrevlett.96.070502
    20 https://doi.org/10.1103/physrevlett.98.010503
    21 https://doi.org/10.1103/physrevlett.98.010504
    22 https://doi.org/10.1103/physrevlett.99.180503
    23 https://doi.org/10.1103/revmodphys.81.1301
    24 https://doi.org/10.1364/ol.20.001695
    25 https://doi.org/10.1364/ol.34.003238
    26 schema:datePublished 2010
    27 schema:datePublishedReg 2010-01-01
    28 schema:description The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods.
    29 schema:editor N92d9add3e09b4710ba7d8caefb182a58
    30 schema:genre chapter
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N02635d7df27140239f5dc439d00909a1
    34 schema:name Passive Decoy State Quantum Key Distribution
    35 schema:pagination 132-141
    36 schema:productId N0aaa5037674842c0accd54dcb59f9ba8
    37 Nbfbd2e4965c04ea78ddbee911909c6db
    38 Nd5d2c2f050764917adccc0d685eaa578
    39 schema:publisher Nbac2365d5a25455d9d7bceb790e99468
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020767582
    41 https://doi.org/10.1007/978-3-642-11731-2_17
    42 schema:sdDatePublished 2019-04-16T07:29
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N7b998901ea7e4fc183f25bc8d75ed4c2
    45 schema:url https://link.springer.com/10.1007%2F978-3-642-11731-2_17
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset chapters
    48 rdf:type schema:Chapter
    49 N02635d7df27140239f5dc439d00909a1 schema:isbn 978-3-642-11730-5
    50 978-3-642-11731-2
    51 schema:name Quantum Communication and Quantum Networking
    52 rdf:type schema:Book
    53 N08f8d5bffa1c4e66bbf94c0b2e642a04 schema:familyName Pascazio
    54 schema:givenName Saverio
    55 rdf:type schema:Person
    56 N0aaa5037674842c0accd54dcb59f9ba8 schema:name doi
    57 schema:value 10.1007/978-3-642-11731-2_17
    58 rdf:type schema:PropertyValue
    59 N1afc863e63a54d28b9cdd9e3837c9160 schema:familyName Villoresi
    60 schema:givenName Paolo
    61 rdf:type schema:Person
    62 N218a97867fb14aaaa850210826e518bb rdf:first sg:person.01232050364.51
    63 rdf:rest Nc3c9254de26d406fa584d432fed6a033
    64 N64af1f19fd4e4c59b85253fa5f0c21b4 rdf:first sg:person.011116240401.87
    65 rdf:rest Nf92fdc5e0a6140388dbe7ef17ec4f0cd
    66 N657733954712472586745f3c5b486c2b rdf:first N08f8d5bffa1c4e66bbf94c0b2e642a04
    67 rdf:rest Nb76a000673bd4c6f87879a9e4e2c2eec
    68 N7b998901ea7e4fc183f25bc8d75ed4c2 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N92d9add3e09b4710ba7d8caefb182a58 rdf:first N9ec6acb9e4ca4cd8a32c68657e16ea7c
    71 rdf:rest N657733954712472586745f3c5b486c2b
    72 N9ec6acb9e4ca4cd8a32c68657e16ea7c schema:familyName Sergienko
    73 schema:givenName Alexander
    74 rdf:type schema:Person
    75 Nb76a000673bd4c6f87879a9e4e2c2eec rdf:first N1afc863e63a54d28b9cdd9e3837c9160
    76 rdf:rest rdf:nil
    77 Nbac2365d5a25455d9d7bceb790e99468 schema:location Berlin, Heidelberg
    78 schema:name Springer Berlin Heidelberg
    79 rdf:type schema:Organisation
    80 Nbfbd2e4965c04ea78ddbee911909c6db schema:name dimensions_id
    81 schema:value pub.1020767582
    82 rdf:type schema:PropertyValue
    83 Nc3c9254de26d406fa584d432fed6a033 rdf:first sg:person.01112452623.28
    84 rdf:rest rdf:nil
    85 Nd5d2c2f050764917adccc0d685eaa578 schema:name readcube_id
    86 schema:value 62f40a42cd118ff153660eb0d73edbfe6a9db0002baaf5688c914ca63863af38
    87 rdf:type schema:PropertyValue
    88 Nf92fdc5e0a6140388dbe7ef17ec4f0cd rdf:first sg:person.010654702601.98
    89 rdf:rest N218a97867fb14aaaa850210826e518bb
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    95 rdf:type schema:DefinedTerm
    96 sg:person.010654702601.98 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
    97 schema:familyName Moroder
    98 schema:givenName Tobias
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654702601.98
    100 rdf:type schema:Person
    101 sg:person.011116240401.87 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
    102 schema:familyName Curty
    103 schema:givenName Marcos
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116240401.87
    105 rdf:type schema:Person
    106 sg:person.01112452623.28 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
    107 schema:familyName Lütkenhaus
    108 schema:givenName Norbert
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112452623.28
    110 rdf:type schema:Person
    111 sg:person.01232050364.51 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    112 schema:familyName Ma
    113 schema:givenName Xiongfeng
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232050364.51
    115 rdf:type schema:Person
    116 sg:pub.10.1007/bf00191318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000187285
    117 https://doi.org/10.1007/bf00191318
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00145-004-0142-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010175559
    120 https://doi.org/10.1007/s00145-004-0142-y
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/378449a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037706351
    123 https://doi.org/10.1038/378449a0
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1140/epjd/e2007-00010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047127008
    126 https://doi.org/10.1140/epjd/e2007-00010-4
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1063/1.1738173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024644718
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1080/09500340008244058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025884882
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1080/09500340600578369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048102357
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1088/1367-2630/10/7/073018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019373290
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physreva.51.1863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029956256
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physreva.72.012326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022032
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physreva.75.050305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045281998
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.85.1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047714332
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.91.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025620862
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.94.230503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017687775
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.94.230504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020143779
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrevlett.96.070502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028002981
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.98.010503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013121074
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevlett.98.010504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833332
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.99.180503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935734
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/revmodphys.81.1301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495359
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1364/ol.20.001695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065216161
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1364/ol.34.003238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065227820
    163 rdf:type schema:CreativeWork
    164 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    165 schema:name Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
    166 rdf:type schema:Organization
    167 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
    168 schema:name Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
    169 Quantum Information Theory Group, Institut für Theoretische Physik I, and Max Planck Institute for the Science of Light, University of Erlangen-Nürnberg, 91058, Erlangen, Germany
    170 rdf:type schema:Organization
    171 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
    172 schema:name Department of Signal Theory and Communications, ETSI Telecomunicación, University of Vigo, E-36310, Vigo, Spain
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...