2010
AUTHORSMarcos Curty , Tobias Moroder , Xiongfeng Ma , Norbert Lütkenhaus
ABSTRACTThe use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods. More... »
PAGES132-141
Quantum Communication and Quantum Networking
ISBN
978-3-642-11730-5
978-3-642-11731-2
http://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17
DOIhttp://dx.doi.org/10.1007/978-3-642-11731-2_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020767582
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Vigo",
"id": "https://www.grid.ac/institutes/grid.6312.6",
"name": [
"Department of Signal Theory and Communications, ETSI Telecomunicaci\u00f3n, University of Vigo, E-36310, Vigo, Spain"
],
"type": "Organization"
},
"familyName": "Curty",
"givenName": "Marcos",
"id": "sg:person.011116240401.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116240401.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Erlangen-Nuremberg",
"id": "https://www.grid.ac/institutes/grid.5330.5",
"name": [
"Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada",
"Quantum Information Theory Group, Institut f\u00fcr Theoretische Physik I, and Max Planck Institute for the Science of Light, University of Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "Moroder",
"givenName": "Tobias",
"id": "sg:person.010654702601.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654702601.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Waterloo",
"id": "https://www.grid.ac/institutes/grid.46078.3d",
"name": [
"Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
],
"type": "Organization"
},
"familyName": "Ma",
"givenName": "Xiongfeng",
"id": "sg:person.01232050364.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232050364.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Erlangen-Nuremberg",
"id": "https://www.grid.ac/institutes/grid.5330.5",
"name": [
"Institute for Quantum Computing, University of Waterloo, N2L 3G1, Waterloo, ON, Canada",
"Quantum Information Theory Group, Institut f\u00fcr Theoretische Physik I, and Max Planck Institute for the Science of Light, University of Erlangen-N\u00fcrnberg, 91058, Erlangen, Germany"
],
"type": "Organization"
},
"familyName": "L\u00fctkenhaus",
"givenName": "Norbert",
"id": "sg:person.01112452623.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112452623.28"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00191318",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000187285",
"https://doi.org/10.1007/bf00191318"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00191318",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000187285",
"https://doi.org/10.1007/bf00191318"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00145-004-0142-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010175559",
"https://doi.org/10.1007/s00145-004-0142-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.180503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011935734"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.180503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011935734"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.98.010503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013121074"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.98.010503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013121074"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.94.230503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017687775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.94.230503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017687775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1367-2630/10/7/073018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019373290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.94.230504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020143779"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.94.230504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020143779"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1738173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024644718"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.91.057901",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025620862"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.91.057901",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025620862"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/09500340008244058",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025884882"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.96.070502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028002981"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.96.070502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028002981"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.51.1863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029956256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.51.1863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029956256"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.1301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037495359"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.1301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037495359"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/378449a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037706351",
"https://doi.org/10.1038/378449a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.75.050305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045281998"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.75.050305",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045281998"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjd/e2007-00010-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047127008",
"https://doi.org/10.1140/epjd/e2007-00010-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.85.1330",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047714332"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.85.1330",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047714332"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.72.012326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048022032"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.72.012326",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048022032"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/09500340600578369",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048102357"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.98.010504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060833332"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.98.010504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060833332"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ol.20.001695",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065216161"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ol.34.003238",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065227820"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods.",
"editor": [
{
"familyName": "Sergienko",
"givenName": "Alexander",
"type": "Person"
},
{
"familyName": "Pascazio",
"givenName": "Saverio",
"type": "Person"
},
{
"familyName": "Villoresi",
"givenName": "Paolo",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-11731-2_17",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-11730-5",
"978-3-642-11731-2"
],
"name": "Quantum Communication and Quantum Networking",
"type": "Book"
},
"name": "Passive Decoy State Quantum Key Distribution",
"pagination": "132-141",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020767582"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-11731-2_17"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"62f40a42cd118ff153660eb0d73edbfe6a9db0002baaf5688c914ca63863af38"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-11731-2_17",
"https://app.dimensions.ai/details/publication/pub.1020767582"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57871_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-11731-2_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11731-2_17'
This table displays all metadata directly associated to this object as RDF triples.
173 TRIPLES
23 PREDICATES
49 URIs
20 LITERALS
8 BLANK NODES