The Maxwell Problem (Mathematical Aspects) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Evgeniy V. Radkevich

ABSTRACT

We study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman projection onto the phase space of consolidated variables. For small initial data we construct the Chapman projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman projection are expressed in terms of the solvability of the Riccati matrix equations with parameter. More... »

PAGES

165-188

References to SciGraph publications

  • 1992-01. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1993-03. Heat pulse experiments revisited in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 1999-06. Divergence‐Measure Fields and Hyperbolic Conservation Laws in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1991. Fluid Dynamic Limits of Discrete Velocity Kinetic Equations in ADVANCES IN KINETIC THEORY AND CONTINUUM MECHANICS
  • 2008-09. Hyperbolic regularizations of conservation laws in RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS
  • 2009-03. On the Maxwell problem in JOURNAL OF MATHEMATICAL SCIENCES
  • Book

    TITLE

    Continuous Media with Microstructure

    ISBN

    978-3-642-11444-1
    978-3-642-11445-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15

    DOI

    http://dx.doi.org/10.1007/978-3-642-11445-8_15

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007259991


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Department Mech.-Math., Moscow State University, Vorobievy Gory, 119899\u00a0Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radkevich", 
            "givenName": "Evgeniy V.", 
            "id": "sg:person.010212007350.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02099268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002791057", 
              "https://doi.org/10.1007/bf02099268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-50235-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007097945", 
              "https://doi.org/10.1007/978-3-642-50235-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009827263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009827263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002050050146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020216881", 
              "https://doi.org/10.1007/s002050050146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1061920808030051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025130911", 
              "https://doi.org/10.1134/s1061920808030051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10958-009-9361-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032277715", 
              "https://doi.org/10.1007/s10958-009-9361-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01135371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042730745", 
              "https://doi.org/10.1007/bf01135371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01135371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042730745", 
              "https://doi.org/10.1007/bf01135371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160020403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049725519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160460503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050917585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160460503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050917585"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "We study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman projection onto the phase space of consolidated variables. For small initial data we construct the Chapman projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman projection are expressed in terms of the solvability of the Riccati matrix equations with parameter.", 
        "editor": [
          {
            "familyName": "Albers", 
            "givenName": "Bettina", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-11445-8_15", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-11444-1", 
            "978-3-642-11445-8"
          ], 
          "name": "Continuous Media with Microstructure", 
          "type": "Book"
        }, 
        "name": "The Maxwell Problem (Mathematical Aspects)", 
        "pagination": "165-188", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-11445-8_15"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2294d8ac98cf850fcaf1db64d6201c4a0782666954e59d2aa0a390dfcef8d3c7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007259991"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-11445-8_15", 
          "https://app.dimensions.ai/details/publication/pub.1007259991"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T01:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000553.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-11445-8_15"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-11445-8_15 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N35f1f6587bf64a108e73570a8e851065
    4 schema:citation sg:pub.10.1007/978-3-642-50235-4_6
    5 sg:pub.10.1007/bf01135371
    6 sg:pub.10.1007/bf02099268
    7 sg:pub.10.1007/s002050050146
    8 sg:pub.10.1007/s10958-009-9361-y
    9 sg:pub.10.1134/s1061920808030051
    10 https://doi.org/10.1002/cpa.3160020403
    11 https://doi.org/10.1002/cpa.3160460503
    12 https://doi.org/10.1002/cpa.3160470602
    13 schema:datePublished 2010
    14 schema:datePublishedReg 2010-01-01
    15 schema:description We study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman projection onto the phase space of consolidated variables. For small initial data we construct the Chapman projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman projection are expressed in terms of the solvability of the Riccati matrix equations with parameter.
    16 schema:editor Nd6672a45ba3a4f23863f0c9544a29bab
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf Nae4d57f8c9184beeaa59e8d681a58655
    21 schema:name The Maxwell Problem (Mathematical Aspects)
    22 schema:pagination 165-188
    23 schema:productId N1c926d0dea424221a1c4235ebeb30f1c
    24 N342a775d4277455da5e82232634ca865
    25 N8aed8166c64f433099faebef94f43b0c
    26 schema:publisher Nfa7c530f282d4d5aae5ef7b4a95d020f
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259991
    28 https://doi.org/10.1007/978-3-642-11445-8_15
    29 schema:sdDatePublished 2019-04-16T01:22
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N68aeadef1dea480d9f16fbb43dcdfc28
    32 schema:url http://link.springer.com/10.1007/978-3-642-11445-8_15
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N1c926d0dea424221a1c4235ebeb30f1c schema:name dimensions_id
    37 schema:value pub.1007259991
    38 rdf:type schema:PropertyValue
    39 N342a775d4277455da5e82232634ca865 schema:name doi
    40 schema:value 10.1007/978-3-642-11445-8_15
    41 rdf:type schema:PropertyValue
    42 N35f1f6587bf64a108e73570a8e851065 rdf:first sg:person.010212007350.31
    43 rdf:rest rdf:nil
    44 N53ce79c24ecc47af905996d1b1e5281f schema:familyName Albers
    45 schema:givenName Bettina
    46 rdf:type schema:Person
    47 N68aeadef1dea480d9f16fbb43dcdfc28 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N8aed8166c64f433099faebef94f43b0c schema:name readcube_id
    50 schema:value 2294d8ac98cf850fcaf1db64d6201c4a0782666954e59d2aa0a390dfcef8d3c7
    51 rdf:type schema:PropertyValue
    52 Nae4d57f8c9184beeaa59e8d681a58655 schema:isbn 978-3-642-11444-1
    53 978-3-642-11445-8
    54 schema:name Continuous Media with Microstructure
    55 rdf:type schema:Book
    56 Nd6672a45ba3a4f23863f0c9544a29bab rdf:first N53ce79c24ecc47af905996d1b1e5281f
    57 rdf:rest rdf:nil
    58 Nfa7c530f282d4d5aae5ef7b4a95d020f schema:location Berlin, Heidelberg
    59 schema:name Springer Berlin Heidelberg
    60 rdf:type schema:Organisation
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:person.010212007350.31 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    68 schema:familyName Radkevich
    69 schema:givenName Evgeniy V.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
    71 rdf:type schema:Person
    72 sg:pub.10.1007/978-3-642-50235-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007097945
    73 https://doi.org/10.1007/978-3-642-50235-4_6
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01135371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042730745
    76 https://doi.org/10.1007/bf01135371
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf02099268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002791057
    79 https://doi.org/10.1007/bf02099268
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s002050050146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020216881
    82 https://doi.org/10.1007/s002050050146
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s10958-009-9361-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032277715
    85 https://doi.org/10.1007/s10958-009-9361-y
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1134/s1061920808030051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025130911
    88 https://doi.org/10.1134/s1061920808030051
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1002/cpa.3160020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725519
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1002/cpa.3160460503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050917585
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1002/cpa.3160470602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827263
    95 rdf:type schema:CreativeWork
    96 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    97 schema:name Department Mech.-Math., Moscow State University, Vorobievy Gory, 119899 Moscow, Russia
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...