2010
AUTHORS ABSTRACTWe study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman projection onto the phase space of consolidated variables. For small initial data we construct the Chapman projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman projection are expressed in terms of the solvability of the Riccati matrix equations with parameter. More... »
PAGES165-188
Continuous Media with Microstructure
ISBN
978-3-642-11444-1
978-3-642-11445-8
http://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15
DOIhttp://dx.doi.org/10.1007/978-3-642-11445-8_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007259991
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Moscow State University",
"id": "https://www.grid.ac/institutes/grid.14476.30",
"name": [
"Department Mech.-Math., Moscow State University, Vorobievy Gory, 119899\u00a0Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Radkevich",
"givenName": "Evgeniy V.",
"id": "sg:person.010212007350.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02099268",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002791057",
"https://doi.org/10.1007/bf02099268"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-50235-4_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007097945",
"https://doi.org/10.1007/978-3-642-50235-4_6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160470602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009827263"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160470602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009827263"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002050050146",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020216881",
"https://doi.org/10.1007/s002050050146"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061920808030051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025130911",
"https://doi.org/10.1134/s1061920808030051"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10958-009-9361-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032277715",
"https://doi.org/10.1007/s10958-009-9361-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01135371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042730745",
"https://doi.org/10.1007/bf01135371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01135371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042730745",
"https://doi.org/10.1007/bf01135371"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160020403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049725519"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160460503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050917585"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160460503",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050917585"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "We study the large-time behavior of global smooth solutions to the Cauchy problem for hyperbolic regularization of conservation laws. An attracting manifold of special smooth global solutions is determined by the Chapman projection onto the phase space of consolidated variables. For small initial data we construct the Chapman projection and describe its properties in the case of the Cauchy problem for moment approximations of kinetic equations. The existence conditions for the Chapman projection are expressed in terms of the solvability of the Riccati matrix equations with parameter.",
"editor": [
{
"familyName": "Albers",
"givenName": "Bettina",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-11445-8_15",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-11444-1",
"978-3-642-11445-8"
],
"name": "Continuous Media with Microstructure",
"type": "Book"
},
"name": "The Maxwell Problem (Mathematical Aspects)",
"pagination": "165-188",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-11445-8_15"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2294d8ac98cf850fcaf1db64d6201c4a0782666954e59d2aa0a390dfcef8d3c7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007259991"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-11445-8_15",
"https://app.dimensions.ai/details/publication/pub.1007259991"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T01:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000553.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-11445-8_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-11445-8_15'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
23 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES