Dynamic Population Segmentation in Online Market Monitoring View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-05-03

AUTHORS

Norbert Walchhofer , Karl A. Froeschl , Milan Hronsky , Kurt Hornik

ABSTRACT

The objective of the SEMAMO (Semantic Market Monitoring) project is to make use of the increasingly growing information available at Web-based sales and marketing channels for market research, using semi-automatic analysis driven by application domain models. The assumptions are that (i) the Web may serve as a representative “picture” of reality, (ii) the respective online channels map salient market developments, and (iii) all of this accurately and in a timely manner. Limited server requests and market specific access structures of Web portals inhibit both full scans of sampling populations and random selection of sampled offers. Further, product feature categories entail multiple classifications within offer clusters (e.g., geography in tourism). Therefore, SEMAMO proposes an adaptive sampling strategy dealing simultaneously with (i) the dynamics of the population frame, (ii) price dynamics, and (iii) multiple (fuzzy) classifications of offered products. The paper discusses a heuristic method of dynamically segmenting monitored offer populations to stratify online data harvesting depending on both observed price changes and information relevance, and outlines the mechanics of harvest schedule derivation. More... »

PAGES

545-552

References to SciGraph publications

Book

TITLE

Classification as a Tool for Research

ISBN

978-3-642-10744-3
978-3-642-10745-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-10745-0_59

DOI

http://dx.doi.org/10.1007/978-3-642-10745-0_59

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024932894


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walchhofer", 
        "givenName": "Norbert", 
        "id": "sg:person.014175474661.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175474661.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Froeschl", 
        "givenName": "Karl A.", 
        "id": "sg:person.010051100613.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010051100613.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hronsky", 
        "givenName": "Milan", 
        "id": "sg:person.01200074135.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200074135.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornik", 
        "givenName": "Kurt", 
        "id": "sg:person.01355621653.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/267658.267666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035893573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1103323.1103326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046136992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/857166.857170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049946035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72667-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052895162", 
          "https://doi.org/10.1007/978-3-540-72667-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.121508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3727/109830509x12596187863919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071353604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cimca.2006.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094528215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109714650", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109714650", 
          "https://doi.org/10.1007/978-3-7091-6363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109714650", 
          "https://doi.org/10.1007/978-3-7091-6363-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05-03", 
    "datePublishedReg": "2010-05-03", 
    "description": "The objective of the SEMAMO (Semantic Market Monitoring) project is to make use of the increasingly growing information available at Web-based sales and marketing channels for market research, using semi-automatic analysis driven by application domain models. The assumptions are that (i) the Web may serve as a representative \u201cpicture\u201d of reality, (ii) the respective online channels map salient market developments, and (iii) all of this accurately and in a timely manner. Limited server requests and market specific access structures of Web portals inhibit both full scans of sampling populations and random selection of sampled offers. Further, product feature categories entail multiple classifications within offer clusters (e.g., geography in tourism). Therefore, SEMAMO proposes an adaptive sampling strategy dealing simultaneously with (i) the dynamics of the population frame, (ii) price dynamics, and (iii) multiple (fuzzy) classifications of offered products. The paper discusses a heuristic method of dynamically segmenting monitored offer populations to stratify online data harvesting depending on both observed price changes and information relevance, and outlines the mechanics of harvest schedule derivation.", 
    "editor": [
      {
        "familyName": "Locarek-Junge", 
        "givenName": "Hermann", 
        "type": "Person"
      }, 
      {
        "familyName": "Weihs", 
        "givenName": "Claus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-10745-0_59", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-10744-3", 
        "978-3-642-10745-0"
      ], 
      "name": "Classification as a Tool for Research", 
      "type": "Book"
    }, 
    "name": "Dynamic Population Segmentation in Online Market Monitoring", 
    "pagination": "545-552", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024932894"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-10745-0_59"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76c7d077c5af425fa23c2880c3ecf3b05d1e24df6c015e6cea412e01631c7125"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-10745-0_59", 
      "https://app.dimensions.ai/details/publication/pub.1024932894"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118342_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-10745-0_59"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10745-0_59'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10745-0_59'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10745-0_59'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10745-0_59'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-10745-0_59 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd33af4adb4964ceea68bf3661756eb1c
4 schema:citation sg:pub.10.1007/978-3-540-72667-8_3
5 sg:pub.10.1007/978-3-7091-6363-4
6 https://app.dimensions.ai/details/publication/pub.1109714650
7 https://doi.org/10.1109/2.121508
8 https://doi.org/10.1109/cimca.2006.214
9 https://doi.org/10.1145/1103323.1103326
10 https://doi.org/10.1145/267658.267666
11 https://doi.org/10.1145/857166.857170
12 https://doi.org/10.3727/109830509x12596187863919
13 schema:datePublished 2010-05-03
14 schema:datePublishedReg 2010-05-03
15 schema:description The objective of the SEMAMO (Semantic Market Monitoring) project is to make use of the increasingly growing information available at Web-based sales and marketing channels for market research, using semi-automatic analysis driven by application domain models. The assumptions are that (i) the Web may serve as a representative “picture” of reality, (ii) the respective online channels map salient market developments, and (iii) all of this accurately and in a timely manner. Limited server requests and market specific access structures of Web portals inhibit both full scans of sampling populations and random selection of sampled offers. Further, product feature categories entail multiple classifications within offer clusters (e.g., geography in tourism). Therefore, SEMAMO proposes an adaptive sampling strategy dealing simultaneously with (i) the dynamics of the population frame, (ii) price dynamics, and (iii) multiple (fuzzy) classifications of offered products. The paper discusses a heuristic method of dynamically segmenting monitored offer populations to stratify online data harvesting depending on both observed price changes and information relevance, and outlines the mechanics of harvest schedule derivation.
16 schema:editor N090b228852a544d8a58f31c541a56999
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nde2bbf2ab11c471eaab13e9efbfc662c
21 schema:name Dynamic Population Segmentation in Online Market Monitoring
22 schema:pagination 545-552
23 schema:productId N042781624a774002838ea604ad188ab9
24 N315e00c7162642e08cfa0b9d84ae7734
25 Nf7ff9834291045e9aaaf987a0637a707
26 schema:publisher Nadcc81b28b264e54a0bff81f0cf1de31
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024932894
28 https://doi.org/10.1007/978-3-642-10745-0_59
29 schema:sdDatePublished 2019-04-16T08:10
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Ncff4eaa943a24026847d3b35edb5c83c
32 schema:url https://link.springer.com/10.1007%2F978-3-642-10745-0_59
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N042781624a774002838ea604ad188ab9 schema:name dimensions_id
37 schema:value pub.1024932894
38 rdf:type schema:PropertyValue
39 N079c4b9e72c947d99a46248362a03031 rdf:first sg:person.010051100613.67
40 rdf:rest N9743989cf21247ac81c10b8a0c45aa61
41 N090b228852a544d8a58f31c541a56999 rdf:first N5e7ca34afdb44272b46636da70004e6c
42 rdf:rest Nbd4129f98fd24bb3bad81942a8cead58
43 N20ae45809f684f4ab28e8367a83be264 schema:name EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria
44 rdf:type schema:Organization
45 N2d09fd67613e4cb7a6339fc2a9908a1b rdf:first sg:person.01355621653.94
46 rdf:rest rdf:nil
47 N315e00c7162642e08cfa0b9d84ae7734 schema:name doi
48 schema:value 10.1007/978-3-642-10745-0_59
49 rdf:type schema:PropertyValue
50 N5220b2bbe59e49e888e70310f5c8a389 schema:familyName Weihs
51 schema:givenName Claus
52 rdf:type schema:Person
53 N5e7ca34afdb44272b46636da70004e6c schema:familyName Locarek-Junge
54 schema:givenName Hermann
55 rdf:type schema:Person
56 N89ecf505a51a4575b38791fbdacb92a8 schema:name EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria
57 rdf:type schema:Organization
58 N9743989cf21247ac81c10b8a0c45aa61 rdf:first sg:person.01200074135.05
59 rdf:rest N2d09fd67613e4cb7a6339fc2a9908a1b
60 Nadcc81b28b264e54a0bff81f0cf1de31 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Nb3613ac45c5f41409c970d67a14c3012 schema:name EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria
64 rdf:type schema:Organization
65 Nbd4129f98fd24bb3bad81942a8cead58 rdf:first N5220b2bbe59e49e888e70310f5c8a389
66 rdf:rest rdf:nil
67 Nc42036ecba1f4f30a31bdbbf8abceef7 schema:name EC3 - e-commerce competence center, Vorlaufstrasse 5/6, 1010, Vienna, Austria
68 rdf:type schema:Organization
69 Ncff4eaa943a24026847d3b35edb5c83c schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nd33af4adb4964ceea68bf3661756eb1c rdf:first sg:person.014175474661.74
72 rdf:rest N079c4b9e72c947d99a46248362a03031
73 Nde2bbf2ab11c471eaab13e9efbfc662c schema:isbn 978-3-642-10744-3
74 978-3-642-10745-0
75 schema:name Classification as a Tool for Research
76 rdf:type schema:Book
77 Nf7ff9834291045e9aaaf987a0637a707 schema:name readcube_id
78 schema:value 76c7d077c5af425fa23c2880c3ecf3b05d1e24df6c015e6cea412e01631c7125
79 rdf:type schema:PropertyValue
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.010051100613.67 schema:affiliation Nc42036ecba1f4f30a31bdbbf8abceef7
87 schema:familyName Froeschl
88 schema:givenName Karl A.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010051100613.67
90 rdf:type schema:Person
91 sg:person.01200074135.05 schema:affiliation Nb3613ac45c5f41409c970d67a14c3012
92 schema:familyName Hronsky
93 schema:givenName Milan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200074135.05
95 rdf:type schema:Person
96 sg:person.01355621653.94 schema:affiliation N20ae45809f684f4ab28e8367a83be264
97 schema:familyName Hornik
98 schema:givenName Kurt
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94
100 rdf:type schema:Person
101 sg:person.014175474661.74 schema:affiliation N89ecf505a51a4575b38791fbdacb92a8
102 schema:familyName Walchhofer
103 schema:givenName Norbert
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175474661.74
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-540-72667-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052895162
107 https://doi.org/10.1007/978-3-540-72667-8_3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-7091-6363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109714650
110 https://doi.org/10.1007/978-3-7091-6363-4
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1109714650 schema:CreativeWork
113 https://doi.org/10.1109/2.121508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105048
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/cimca.2006.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094528215
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1103323.1103326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046136992
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/267658.267666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035893573
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/857166.857170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049946035
122 rdf:type schema:CreativeWork
123 https://doi.org/10.3727/109830509x12596187863919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071353604
124 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...