Asbestos Detection Method with Frequency Analysis for Microscope Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Hikaru Kumagai , Soichiro Morishita , Kuniaki Kawabata , Hajime Asama , Taketoshi Mishima

ABSTRACT

In this paper, we propose an asbestos detection method focusing on frequency distribution of microscopic images. In building construction, asbestos has been used for molding plates and heat insulation materials. However, increased injury caused by asbestos has become a problem in Japan. Removal of asbestos from building materials and rendering it harmless are common means of alleviating asbestos hazards. Nevertheless, those processes necessitate a judgment of whether asbestos is included in building materials. According to the JIS standards, it is necessary to count 3000 particles in microscopic images. We consider the asbestos shape, and define a new feature obtained through frequency analysis. The proposed method intensifies the low-brightness asbestos using its feature, so it can detect not only high-brightness particles and asbestos but also low-brightness asbestos. We underscore the effectiveness of the method by comparing its results with results counted by an expert. More... »

PAGES

430-439

Book

TITLE

Advances in Visual Computing

ISBN

978-3-642-10519-7
978-3-642-10520-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-10520-3_40

DOI

http://dx.doi.org/10.1007/978-3-642-10520-3_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033648186


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumagai", 
        "givenName": "Hikaru", 
        "id": "sg:person.011574264131.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574264131.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morishita", 
        "givenName": "Soichiro", 
        "id": "sg:person.010604326071.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604326071.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawabata", 
        "givenName": "Kuniaki", 
        "id": "sg:person.011207745276.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207745276.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asama", 
        "givenName": "Hajime", 
        "id": "sg:person.010757025675.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757025675.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishima", 
        "givenName": "Taketoshi", 
        "id": "sg:person.013106042101.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0734-189x(84)80043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002619282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15298668791384346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006202858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02726359808906799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020329955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(99)00130-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029946885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1980.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annhyg/28.4.401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059391498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/48.775292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061176247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1986.4767851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.423854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062375114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20965/jrm.2009.p0186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068822755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3428258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070320806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mfi.2008.4648111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094731793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "In this paper, we propose an asbestos detection method focusing on frequency distribution of microscopic images. In building construction, asbestos has been used for molding plates and heat insulation materials. However, increased injury caused by asbestos has become a problem in Japan. Removal of asbestos from building materials and rendering it harmless are common means of alleviating asbestos hazards. Nevertheless, those processes necessitate a judgment of whether asbestos is included in building materials. According to the JIS standards, it is necessary to count 3000 particles in microscopic images. We consider the asbestos shape, and define a new feature obtained through frequency analysis. The proposed method intensifies the low-brightness asbestos using its feature, so it can detect not only high-brightness particles and asbestos but also low-brightness asbestos. We underscore the effectiveness of the method by comparing its results with results counted by an expert.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Kuno", 
        "givenName": "Yoshinori", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Junxian", 
        "type": "Person"
      }, 
      {
        "familyName": "Pajarola", 
        "givenName": "Renato", 
        "type": "Person"
      }, 
      {
        "familyName": "Lindstrom", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Hinkenjann", 
        "givenName": "Andr\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Encarna\u00e7\u00e3o", 
        "givenName": "Miguel L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Silva", 
        "givenName": "Cl\u00e1udio T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Coming", 
        "givenName": "Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-10520-3_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-10519-7", 
        "978-3-642-10520-3"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Asbestos Detection Method with Frequency Analysis for Microscope Images", 
    "pagination": "430-439", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033648186"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-10520-3_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a049f539c9030838ae7fbdd6362a65a952dc08633a9d6ee96bc59a0f3fa9b449"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-10520-3_40", 
      "https://app.dimensions.ai/details/publication/pub.1033648186"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53016_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-10520-3_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10520-3_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10520-3_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10520-3_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10520-3_40'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-10520-3_40 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9fa8b9f61bcc46da9ffe0a853c10fee4
4 schema:citation https://doi.org/10.1016/s0167-8655(99)00130-0
5 https://doi.org/10.1016/s0734-189x(84)80043-2
6 https://doi.org/10.1080/02726359808906799
7 https://doi.org/10.1080/15298668791384346
8 https://doi.org/10.1093/annhyg/28.4.401
9 https://doi.org/10.1098/rspb.1980.0020
10 https://doi.org/10.1109/48.775292
11 https://doi.org/10.1109/mfi.2008.4648111
12 https://doi.org/10.1109/tpami.1986.4767851
13 https://doi.org/10.1121/1.423854
14 https://doi.org/10.20965/jrm.2009.p0186
15 https://doi.org/10.2307/3428258
16 schema:datePublished 2009
17 schema:datePublishedReg 2009-01-01
18 schema:description In this paper, we propose an asbestos detection method focusing on frequency distribution of microscopic images. In building construction, asbestos has been used for molding plates and heat insulation materials. However, increased injury caused by asbestos has become a problem in Japan. Removal of asbestos from building materials and rendering it harmless are common means of alleviating asbestos hazards. Nevertheless, those processes necessitate a judgment of whether asbestos is included in building materials. According to the JIS standards, it is necessary to count 3000 particles in microscopic images. We consider the asbestos shape, and define a new feature obtained through frequency analysis. The proposed method intensifies the low-brightness asbestos using its feature, so it can detect not only high-brightness particles and asbestos but also low-brightness asbestos. We underscore the effectiveness of the method by comparing its results with results counted by an expert.
19 schema:editor Nce9849e139834fd69f05b859f807628b
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nb142659df3884b238adad785c8365f83
24 schema:name Asbestos Detection Method with Frequency Analysis for Microscope Images
25 schema:pagination 430-439
26 schema:productId N2fa7c0a4d5cb44818bf9e867f3551ab2
27 N59806a964d65483fb69c0c182185afad
28 N8a21f16a2c564cebad85297649250e81
29 schema:publisher N63d9f2c48f3c4b10a5f14fd6005c0248
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033648186
31 https://doi.org/10.1007/978-3-642-10520-3_40
32 schema:sdDatePublished 2019-04-16T07:27
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N78ac9172caef4e78bdd21c7762ec4064
35 schema:url https://link.springer.com/10.1007%2F978-3-642-10520-3_40
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N04239a3ec54d4a9e9a5ba15ff0209106 schema:familyName Kuno
40 schema:givenName Yoshinori
41 rdf:type schema:Person
42 N048d194df84f4af89b772e5c223cf174 schema:familyName Hinkenjann
43 schema:givenName André
44 rdf:type schema:Person
45 N0ed7aeff27a5490aa3689894c76c27d8 rdf:first N5c11087eb8594312912b12c8846213cb
46 rdf:rest Na5b510ba16034db6bcd9184dcde9ebd3
47 N162b003e476c4d2fb707017a8aa8d787 rdf:first N68e12d0e94df4ef0a306e59b1c51479c
48 rdf:rest N3c5dbd635e5a40a488c8d2021971daa1
49 N16bfdf121171467fb7116277eb306fe4 schema:familyName Koracin
50 schema:givenName Darko
51 rdf:type schema:Person
52 N1e3289c77cd040e3ba034e23763a9b7b rdf:first sg:person.010604326071.30
53 rdf:rest N9e2da36bfd8849739e1e0a896e58376b
54 N1e868b05fb2644b4b61033718d840f35 rdf:first N352443061e0748c6962ff585f5af3dcf
55 rdf:rest rdf:nil
56 N291cea6057a54cd09d80464d2e44cc54 rdf:first Nb0c4dee7bdbc4553970be327cc18e78e
57 rdf:rest Nec75c34c1e384a7098b41af4d8394494
58 N2bfc819172ce438dadbaf96b53ce8630 rdf:first sg:person.010757025675.28
59 rdf:rest N73ba21f028b042d08b816063f8f22647
60 N2fa7c0a4d5cb44818bf9e867f3551ab2 schema:name readcube_id
61 schema:value a049f539c9030838ae7fbdd6362a65a952dc08633a9d6ee96bc59a0f3fa9b449
62 rdf:type schema:PropertyValue
63 N352443061e0748c6962ff585f5af3dcf schema:familyName Coming
64 schema:givenName Daniel
65 rdf:type schema:Person
66 N3c5dbd635e5a40a488c8d2021971daa1 rdf:first N46c56dd2d2a74f9cab96dbd38f5a3dae
67 rdf:rest Nca2236d525564520a22b49352160c698
68 N46c56dd2d2a74f9cab96dbd38f5a3dae schema:familyName Pajarola
69 schema:givenName Renato
70 rdf:type schema:Person
71 N4f8dfb0418a4419cb8cd6189a94f4ca2 schema:familyName Parvin
72 schema:givenName Bahram
73 rdf:type schema:Person
74 N59806a964d65483fb69c0c182185afad schema:name dimensions_id
75 schema:value pub.1033648186
76 rdf:type schema:PropertyValue
77 N5c11087eb8594312912b12c8846213cb schema:familyName Boyle
78 schema:givenName Richard
79 rdf:type schema:Person
80 N63d9f2c48f3c4b10a5f14fd6005c0248 schema:location Berlin, Heidelberg
81 schema:name Springer Berlin Heidelberg
82 rdf:type schema:Organisation
83 N68e12d0e94df4ef0a306e59b1c51479c schema:familyName Wang
84 schema:givenName Junxian
85 rdf:type schema:Person
86 N6ef4d8246d324363960f6cce2404dcbb rdf:first N048d194df84f4af89b772e5c223cf174
87 rdf:rest N291cea6057a54cd09d80464d2e44cc54
88 N73ba21f028b042d08b816063f8f22647 rdf:first sg:person.013106042101.51
89 rdf:rest rdf:nil
90 N78ac9172caef4e78bdd21c7762ec4064 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N805c516cb50f470fb2f36d5ad9d6eb03 rdf:first N16bfdf121171467fb7116277eb306fe4
93 rdf:rest Nc2084cb4da254b9d803460c8f7ee0cd2
94 N8a21f16a2c564cebad85297649250e81 schema:name doi
95 schema:value 10.1007/978-3-642-10520-3_40
96 rdf:type schema:PropertyValue
97 N97b7c21164924992887e4a6e5d3d800a schema:familyName Silva
98 schema:givenName Cláudio T.
99 rdf:type schema:Person
100 N9e2da36bfd8849739e1e0a896e58376b rdf:first sg:person.011207745276.80
101 rdf:rest N2bfc819172ce438dadbaf96b53ce8630
102 N9fa8b9f61bcc46da9ffe0a853c10fee4 rdf:first sg:person.011574264131.56
103 rdf:rest N1e3289c77cd040e3ba034e23763a9b7b
104 Na5b510ba16034db6bcd9184dcde9ebd3 rdf:first N4f8dfb0418a4419cb8cd6189a94f4ca2
105 rdf:rest N805c516cb50f470fb2f36d5ad9d6eb03
106 Nb0c4dee7bdbc4553970be327cc18e78e schema:familyName Encarnação
107 schema:givenName Miguel L.
108 rdf:type schema:Person
109 Nb142659df3884b238adad785c8365f83 schema:isbn 978-3-642-10519-7
110 978-3-642-10520-3
111 schema:name Advances in Visual Computing
112 rdf:type schema:Book
113 Nc2084cb4da254b9d803460c8f7ee0cd2 rdf:first N04239a3ec54d4a9e9a5ba15ff0209106
114 rdf:rest N162b003e476c4d2fb707017a8aa8d787
115 Nca2236d525564520a22b49352160c698 rdf:first Neec4684bc8be44c1bf375f54ebaa356e
116 rdf:rest N6ef4d8246d324363960f6cce2404dcbb
117 Nce9849e139834fd69f05b859f807628b rdf:first Ne1dde4d135ad44a1910747b5c3a7ebe7
118 rdf:rest N0ed7aeff27a5490aa3689894c76c27d8
119 Ne1dde4d135ad44a1910747b5c3a7ebe7 schema:familyName Bebis
120 schema:givenName George
121 rdf:type schema:Person
122 Nec75c34c1e384a7098b41af4d8394494 rdf:first N97b7c21164924992887e4a6e5d3d800a
123 rdf:rest N1e868b05fb2644b4b61033718d840f35
124 Neec4684bc8be44c1bf375f54ebaa356e schema:familyName Lindstrom
125 schema:givenName Peter
126 rdf:type schema:Person
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
131 schema:name Materials Engineering
132 rdf:type schema:DefinedTerm
133 sg:person.010604326071.30 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
134 schema:familyName Morishita
135 schema:givenName Soichiro
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010604326071.30
137 rdf:type schema:Person
138 sg:person.010757025675.28 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
139 schema:familyName Asama
140 schema:givenName Hajime
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757025675.28
142 rdf:type schema:Person
143 sg:person.011207745276.80 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
144 schema:familyName Kawabata
145 schema:givenName Kuniaki
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207745276.80
147 rdf:type schema:Person
148 sg:person.011574264131.56 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
149 schema:familyName Kumagai
150 schema:givenName Hikaru
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011574264131.56
152 rdf:type schema:Person
153 sg:person.013106042101.51 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
154 schema:familyName Mishima
155 schema:givenName Taketoshi
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51
157 rdf:type schema:Person
158 https://doi.org/10.1016/s0167-8655(99)00130-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029946885
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0734-189x(84)80043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002619282
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/02726359808906799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020329955
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/15298668791384346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006202858
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/annhyg/28.4.401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059391498
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1098/rspb.1980.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702537
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/48.775292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061176247
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/mfi.2008.4648111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094731793
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1121/1.423854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062375114
177 rdf:type schema:CreativeWork
178 https://doi.org/10.20965/jrm.2009.p0186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068822755
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2307/3428258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070320806
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
183 schema:name Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, Japan
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
186 schema:name The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, Japan
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
189 schema:name RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, Japan
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...