Chemical Compounds with Path Frequency Using Multi-Core Technology View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Kun-Ming Yu , Yi-Yan Chang , Jiayi Zhou , Chun-Yuan Huang , Whei-meih Chang , Chun-Yuan Lin , Chuan Yi Tang

ABSTRACT

Drug design is the approach of finding drugs by design using computational tools. When designing a new drug, the structure of the drug molecule can be modeled by classification of potential chemical compounds. Kernel Methods have been successfully used in classifying chemical compounds, within which the most popular one is Support Vector Machine (SVM). In order to classify the characteristics of chemical compounds, methods such as frequency of labeled paths have been proposed to map compounds into feature vectors. In this study, we analyze the path frequencies computed from chemical compounds, and reconstruct all possible compounds that share the same path frequency with the original ones, but differ in their molecular structures. Since the computation time for reconstructing such compounds increase greatly along with the size increase of the compounds, we propose an efficient algorithm based on multi-core processing technology. We report here that our algorithm can infer chemical compounds from path frequency while effectively reduce computation time and obtained high speed up. More... »

PAGES

258-271

References to SciGraph publications

  • 2004. Learning to Find Graph Pre-images in PATTERN RECOGNITION
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • Book

    TITLE

    Scalable Information Systems

    ISBN

    978-3-642-10484-8
    978-3-642-10485-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-10485-5_19

    DOI

    http://dx.doi.org/10.1007/978-3-642-10485-5_19

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021528844


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0305", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Organic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Bioinformatics, Chung Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Kun-Ming", 
            "id": "sg:person.015566066077.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566066077.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Information Management, Chung Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Yi-Yan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Institute of Engineering and Science, Chung Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Jiayi", 
            "id": "sg:person.016405705547.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405705547.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Bioinformatics, Chung Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Chun-Yuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chung Hua University", 
              "id": "https://www.grid.ac/institutes/grid.411655.2", 
              "name": [
                "Department of Bioinformatics, Chung Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Whei-meih", 
            "id": "sg:person.01037555334.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037555334.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chang Gung University", 
              "id": "https://www.grid.ac/institutes/grid.145695.a", 
              "name": [
                "Department of Computer Science and Information Engineering, Chang Gung University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Chun-Yuan", 
            "id": "sg:person.0665540554.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of Computer Science, National Tsing Hua University, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Chuan Yi", 
            "id": "sg:person.01312526135.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-28649-3_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013960225", 
              "https://doi.org/10.1007/978-3-540-28649-3_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28649-3_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013960225", 
              "https://doi.org/10.1007/978-3-540-28649-3_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(95)00156-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016368087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci0341161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055401654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci0341161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055401654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci050039t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055402009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci050039t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055402009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2005.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511801389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098665575"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "Drug design is the approach of finding drugs by design using computational tools. When designing a new drug, the structure of the drug molecule can be modeled by classification of potential chemical compounds. Kernel Methods have been successfully used in classifying chemical compounds, within which the most popular one is Support Vector Machine (SVM). In order to classify the characteristics of chemical compounds, methods such as frequency of labeled paths have been proposed to map compounds into feature vectors. In this study, we analyze the path frequencies computed from chemical compounds, and reconstruct all possible compounds that share the same path frequency with the original ones, but differ in their molecular structures. Since the computation time for reconstructing such compounds increase greatly along with the size increase of the compounds, we propose an efficient algorithm based on multi-core processing technology. We report here that our algorithm can infer chemical compounds from path frequency while effectively reduce computation time and obtained high speed up.", 
        "editor": [
          {
            "familyName": "Mueller", 
            "givenName": "Peter", 
            "type": "Person"
          }, 
          {
            "familyName": "Cao", 
            "givenName": "Jian-Nong", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Cho-Li", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-10485-5_19", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-10484-8", 
            "978-3-642-10485-5"
          ], 
          "name": "Scalable Information Systems", 
          "type": "Book"
        }, 
        "name": "Chemical Compounds with Path Frequency Using Multi-Core Technology", 
        "pagination": "258-271", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021528844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-10485-5_19"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6693180b66ac86d1c9b3f552e5070c0a16e361ee388300ee7e7d731f23322a1d"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-10485-5_19", 
          "https://app.dimensions.ai/details/publication/pub.1021528844"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53016_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-10485-5_19"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10485-5_19'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10485-5_19'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10485-5_19'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10485-5_19'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-10485-5_19 schema:about anzsrc-for:03
    2 anzsrc-for:0305
    3 schema:author Nf69ae13185d347ddb521b8099498a88d
    4 schema:citation sg:pub.10.1007/978-3-540-28649-3_31
    5 sg:pub.10.1007/bf00994018
    6 https://doi.org/10.1016/0304-3975(95)00156-5
    7 https://doi.org/10.1017/cbo9780511801389
    8 https://doi.org/10.1021/ci0341161
    9 https://doi.org/10.1021/ci050039t
    10 https://doi.org/10.1109/tkde.2005.127
    11 schema:datePublished 2009
    12 schema:datePublishedReg 2009-01-01
    13 schema:description Drug design is the approach of finding drugs by design using computational tools. When designing a new drug, the structure of the drug molecule can be modeled by classification of potential chemical compounds. Kernel Methods have been successfully used in classifying chemical compounds, within which the most popular one is Support Vector Machine (SVM). In order to classify the characteristics of chemical compounds, methods such as frequency of labeled paths have been proposed to map compounds into feature vectors. In this study, we analyze the path frequencies computed from chemical compounds, and reconstruct all possible compounds that share the same path frequency with the original ones, but differ in their molecular structures. Since the computation time for reconstructing such compounds increase greatly along with the size increase of the compounds, we propose an efficient algorithm based on multi-core processing technology. We report here that our algorithm can infer chemical compounds from path frequency while effectively reduce computation time and obtained high speed up.
    14 schema:editor Nc194f04994b741b5b4f9284996ed8320
    15 schema:genre chapter
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N1285b83b04b84b918eb0ddfb6cd99529
    19 schema:name Chemical Compounds with Path Frequency Using Multi-Core Technology
    20 schema:pagination 258-271
    21 schema:productId N262a0af2f95a4be28cf3df9d3578d1ab
    22 N3f5f1846c1a448328a6d417177c05ab7
    23 N80b1e12e2ca14082acf888a27c36086d
    24 schema:publisher N3888e6db44e94096ace646dfbd31c8d2
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021528844
    26 https://doi.org/10.1007/978-3-642-10485-5_19
    27 schema:sdDatePublished 2019-04-16T07:27
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nd12fedeef1574f91aa6b5edc97b4bc12
    30 schema:url https://link.springer.com/10.1007%2F978-3-642-10485-5_19
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset chapters
    33 rdf:type schema:Chapter
    34 N04ac5a4ab8174b3cbf563f48405ec129 rdf:first sg:person.01037555334.22
    35 rdf:rest Nff66f5a35c614756b35ac00c58331aa0
    36 N09321ffb0db54da0a5882d81de8c35f8 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    37 schema:familyName Huang
    38 schema:givenName Chun-Yuan
    39 rdf:type schema:Person
    40 N1285b83b04b84b918eb0ddfb6cd99529 schema:isbn 978-3-642-10484-8
    41 978-3-642-10485-5
    42 schema:name Scalable Information Systems
    43 rdf:type schema:Book
    44 N262a0af2f95a4be28cf3df9d3578d1ab schema:name readcube_id
    45 schema:value 6693180b66ac86d1c9b3f552e5070c0a16e361ee388300ee7e7d731f23322a1d
    46 rdf:type schema:PropertyValue
    47 N32e1158bf34240e6ba93f01f78b5e426 schema:familyName Wang
    48 schema:givenName Cho-Li
    49 rdf:type schema:Person
    50 N3888e6db44e94096ace646dfbd31c8d2 schema:location Berlin, Heidelberg
    51 schema:name Springer Berlin Heidelberg
    52 rdf:type schema:Organisation
    53 N3b3ba8031f0c4baaaac19982812177e3 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    54 schema:familyName Chang
    55 schema:givenName Yi-Yan
    56 rdf:type schema:Person
    57 N3f5f1846c1a448328a6d417177c05ab7 schema:name dimensions_id
    58 schema:value pub.1021528844
    59 rdf:type schema:PropertyValue
    60 N50d1ca8f68044b8cac5bf2f3567f5377 rdf:first sg:person.01312526135.27
    61 rdf:rest rdf:nil
    62 N64cf550bb0684bf6bad19a88eab2bae2 rdf:first N3b3ba8031f0c4baaaac19982812177e3
    63 rdf:rest Ncfbf04f637134882a832f140c0b310be
    64 N80b1e12e2ca14082acf888a27c36086d schema:name doi
    65 schema:value 10.1007/978-3-642-10485-5_19
    66 rdf:type schema:PropertyValue
    67 N8b152b9c3aaf42d0a546c81e5e6b3ec2 schema:familyName Cao
    68 schema:givenName Jian-Nong
    69 rdf:type schema:Person
    70 N98a3cda5cd294e4d83e2812ea739ebb7 rdf:first N32e1158bf34240e6ba93f01f78b5e426
    71 rdf:rest rdf:nil
    72 Na33983b891024510b2522db535a2f501 schema:familyName Mueller
    73 schema:givenName Peter
    74 rdf:type schema:Person
    75 Nc194f04994b741b5b4f9284996ed8320 rdf:first Na33983b891024510b2522db535a2f501
    76 rdf:rest Nc30e7146fc654fecb3fe8c703c07ee38
    77 Nc30e7146fc654fecb3fe8c703c07ee38 rdf:first N8b152b9c3aaf42d0a546c81e5e6b3ec2
    78 rdf:rest N98a3cda5cd294e4d83e2812ea739ebb7
    79 Ncfbf04f637134882a832f140c0b310be rdf:first sg:person.016405705547.11
    80 rdf:rest Ne83721ea53ab4804a0ecac17e5c5ca28
    81 Nd12fedeef1574f91aa6b5edc97b4bc12 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Ne83721ea53ab4804a0ecac17e5c5ca28 rdf:first N09321ffb0db54da0a5882d81de8c35f8
    84 rdf:rest N04ac5a4ab8174b3cbf563f48405ec129
    85 Nf69ae13185d347ddb521b8099498a88d rdf:first sg:person.015566066077.39
    86 rdf:rest N64cf550bb0684bf6bad19a88eab2bae2
    87 Nff66f5a35c614756b35ac00c58331aa0 rdf:first sg:person.0665540554.26
    88 rdf:rest N50d1ca8f68044b8cac5bf2f3567f5377
    89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Chemical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0305 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Organic Chemistry
    94 rdf:type schema:DefinedTerm
    95 sg:person.01037555334.22 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    96 schema:familyName Chang
    97 schema:givenName Whei-meih
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037555334.22
    99 rdf:type schema:Person
    100 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    101 schema:familyName Tang
    102 schema:givenName Chuan Yi
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
    104 rdf:type schema:Person
    105 sg:person.015566066077.39 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    106 schema:familyName Yu
    107 schema:givenName Kun-Ming
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566066077.39
    109 rdf:type schema:Person
    110 sg:person.016405705547.11 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
    111 schema:familyName Zhou
    112 schema:givenName Jiayi
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405705547.11
    114 rdf:type schema:Person
    115 sg:person.0665540554.26 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
    116 schema:familyName Lin
    117 schema:givenName Chun-Yuan
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540554.26
    119 rdf:type schema:Person
    120 sg:pub.10.1007/978-3-540-28649-3_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013960225
    121 https://doi.org/10.1007/978-3-540-28649-3_31
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    124 https://doi.org/10.1007/bf00994018
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0304-3975(95)00156-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016368087
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1017/cbo9780511801389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665575
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1021/ci0341161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401654
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1021/ci050039t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055402009
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/tkde.2005.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661376
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
    137 schema:name Department of Computer Science and Information Engineering, Chang Gung University, Taiwan
    138 rdf:type schema:Organization
    139 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
    140 schema:name Department of Computer Science, National Tsing Hua University, Taiwan
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
    143 schema:name Department of Bioinformatics, Chung Hua University, Taiwan
    144 Department of Information Management, Chung Hua University, Taiwan
    145 Institute of Engineering and Science, Chung Hua University, Taiwan
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...