Randomized Tree Ensembles for Object Detection in Computational Pathology View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Thomas J. Fuchs , Johannes Haybaeck , Peter J. Wild , Mathias Heikenwalder , Holger Moch , Adriano Aguzzi , Joachim M. Buhmann

ABSTRACT

Modern pathology broadly searches for biomarkers which are predictive for the survival of patients or the progression of cancer. Due to the lack of robust analysis algorithms this work is still performed manually by estimating staining on whole slides or tissue microarrays (TMA). Therefore, the design of decision support systems which can automate cancer diagnosis as well as objectify it pose a highly challenging problem for the medical imaging community. In this paper we propose Relational Detection Forests (RDF) as a novel object detection algorithm, which can be applied in an off-the-shelf manner to a large variety of tasks. The contributions of this work are twofold: (i) we describe a feature set which is able to capture shape information as well as local context. Furthermore, the feature set is guaranteed to be generally applicable due to its high flexibility. (ii) we present an ensemble learning algorithm based on randomized trees, which can cope with exceptionally high dimensional feature spaces in an efficient manner. Contrary to classical approaches, subspaces are not split based on thresholds but by learning relations between features. The algorithm is validated on tissue from 133 human clear cell renal cell carcinoma patients (ccRCC) and on murine liver samples of eight mice. On both species RDFs compared favorably to state of the art methods and approaches the detection accuracy of trained pathologists. More... »

PAGES

367-378

References to SciGraph publications

  • 2007. A Clinically Motivated 2-Fold Framework for Quantifying and Classifying Immunohistochemically Stained Specimens in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2007
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2008. Semi-supervised On-Line Boosting for Robust Tracking in COMPUTER VISION – ECCV 2008
  • 2007. High Throughput Analysis of Breast Cancer Specimens on the Grid in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2007
  • 2008. Weakly Supervised Cell Nuclei Detection and Segmentation on Tissue Microarrays of Renal Clear Cell Carcinoma in PATTERN RECOGNITION
  • 2006-04. Extremely randomized trees in MACHINE LEARNING
  • Book

    TITLE

    Advances in Visual Computing

    ISBN

    978-3-642-10330-8
    978-3-642-10331-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-10331-5_35

    DOI

    http://dx.doi.org/10.1007/978-3-642-10331-5_35

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037439765


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Computer Science, ETH Z\u00fcrich, Z\u00fcrich, Switzerland", 
                "Competence Center for Systems Physiology and Metabolic Diseases, ETH Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Thomas J.", 
            "id": "sg:person.01266521565.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266521565.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pathology, Institute for Neuropathology, University Hospital, Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haybaeck", 
            "givenName": "Johannes", 
            "id": "sg:person.01220251025.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220251025.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pathology, Institute of Surgical Pathology, University Hospital Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wild", 
            "givenName": "Peter J.", 
            "id": "sg:person.0706733305.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706733305.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pathology, Institute for Neuropathology, University Hospital, Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heikenwalder", 
            "givenName": "Mathias", 
            "id": "sg:person.0707721122.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707721122.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pathology, Institute of Surgical Pathology, University Hospital Z\u00fcrich", 
                "Competence Center for Systems Physiology and Metabolic Diseases, ETH Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moch", 
            "givenName": "Holger", 
            "id": "sg:person.01246606335.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246606335.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Pathology, Institute for Neuropathology, University Hospital, Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aguzzi", 
            "givenName": "Adriano", 
            "id": "sg:person.01144615220.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144615220.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Computer Science, ETH Z\u00fcrich, Z\u00fcrich, Switzerland", 
                "Competence Center for Systems Physiology and Metabolic Diseases, ETH Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buhmann", 
            "givenName": "Joachim M.", 
            "id": "sg:person.01220203604.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220203604.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10994-006-6226-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007730804", 
              "https://doi.org/10.1007/s10994-006-6226-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012827180", 
              "https://doi.org/10.1007/978-3-540-75757-3_75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75757-3_75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012827180", 
              "https://doi.org/10.1007/978-3-540-75757-3_75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75759-7_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024656279", 
              "https://doi.org/10.1007/978-3-540-75759-7_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75759-7_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024656279", 
              "https://doi.org/10.1007/978-3-540-75759-7_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69321-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026816074", 
              "https://doi.org/10.1007/978-3-540-69321-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14639230500077444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030405755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nav.3800020109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032778056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.humpath.2007.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033692752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2006.12.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046845141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88682-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052337121", 
              "https://doi.org/10.1007/978-3-540-88682-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88682-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052337121", 
              "https://doi.org/10.1007/978-3-540-88682-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2005.847515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2005.847515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2001.990517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093187020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093997066"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "Modern pathology broadly searches for biomarkers which are predictive for the survival of patients or the progression of cancer. Due to the lack of robust analysis algorithms this work is still performed manually by estimating staining on whole slides or tissue microarrays (TMA). Therefore, the design of decision support systems which can automate cancer diagnosis as well as objectify it pose a highly challenging problem for the medical imaging community. In this paper we propose Relational Detection Forests (RDF) as a novel object detection algorithm, which can be applied in an off-the-shelf manner to a large variety of tasks. The contributions of this work are twofold: (i) we describe a feature set which is able to capture shape information as well as local context. Furthermore, the feature set is guaranteed to be generally applicable due to its high flexibility. (ii) we present an ensemble learning algorithm based on randomized trees, which can cope with exceptionally high dimensional feature spaces in an efficient manner. Contrary to classical approaches, subspaces are not split based on thresholds but by learning relations between features. The algorithm is validated on tissue from 133 human clear cell renal cell carcinoma patients (ccRCC) and on murine liver samples of eight mice. On both species RDFs compared favorably to state of the art methods and approaches the detection accuracy of trained pathologists.", 
        "editor": [
          {
            "familyName": "Bebis", 
            "givenName": "George", 
            "type": "Person"
          }, 
          {
            "familyName": "Boyle", 
            "givenName": "Richard", 
            "type": "Person"
          }, 
          {
            "familyName": "Parvin", 
            "givenName": "Bahram", 
            "type": "Person"
          }, 
          {
            "familyName": "Koracin", 
            "givenName": "Darko", 
            "type": "Person"
          }, 
          {
            "familyName": "Kuno", 
            "givenName": "Yoshinori", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Junxian", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Jun-Xuan", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Junxian", 
            "type": "Person"
          }, 
          {
            "familyName": "Pajarola", 
            "givenName": "Renato", 
            "type": "Person"
          }, 
          {
            "familyName": "Lindstrom", 
            "givenName": "Peter", 
            "type": "Person"
          }, 
          {
            "familyName": "Hinkenjann", 
            "givenName": "Andr\u00e9", 
            "type": "Person"
          }, 
          {
            "familyName": "Encarna\u00e7\u00e3o", 
            "givenName": "Miguel L.", 
            "type": "Person"
          }, 
          {
            "familyName": "Silva", 
            "givenName": "Cl\u00e1udio T.", 
            "type": "Person"
          }, 
          {
            "familyName": "Coming", 
            "givenName": "Daniel", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-10331-5_35", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-10330-8", 
            "978-3-642-10331-5"
          ], 
          "name": "Advances in Visual Computing", 
          "type": "Book"
        }, 
        "name": "Randomized Tree Ensembles for Object Detection in Computational Pathology", 
        "pagination": "367-378", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037439765"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-10331-5_35"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b258cc769749f5b762b9932274fe2497eb173675679e912441d85792e15f58a5"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-10331-5_35", 
          "https://app.dimensions.ai/details/publication/pub.1037439765"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53019_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-10331-5_35"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10331-5_35'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10331-5_35'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10331-5_35'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10331-5_35'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-10331-5_35 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne33d11ceac6f4f0a9c95c9164dada963
    4 schema:citation sg:pub.10.1007/978-3-540-69321-5_18
    5 sg:pub.10.1007/978-3-540-75757-3_75
    6 sg:pub.10.1007/978-3-540-75759-7_35
    7 sg:pub.10.1007/978-3-540-88682-2_19
    8 sg:pub.10.1007/s10994-006-6226-1
    9 sg:pub.10.1023/a:1010933404324
    10 https://doi.org/10.1002/nav.3800020109
    11 https://doi.org/10.1016/j.csda.2006.12.030
    12 https://doi.org/10.1016/j.humpath.2007.05.017
    13 https://doi.org/10.1080/14639230500077444
    14 https://doi.org/10.1109/cvpr.2001.990517
    15 https://doi.org/10.1109/cvpr.2005.177
    16 https://doi.org/10.1109/titb.2005.847515
    17 schema:datePublished 2009
    18 schema:datePublishedReg 2009-01-01
    19 schema:description Modern pathology broadly searches for biomarkers which are predictive for the survival of patients or the progression of cancer. Due to the lack of robust analysis algorithms this work is still performed manually by estimating staining on whole slides or tissue microarrays (TMA). Therefore, the design of decision support systems which can automate cancer diagnosis as well as objectify it pose a highly challenging problem for the medical imaging community. In this paper we propose Relational Detection Forests (RDF) as a novel object detection algorithm, which can be applied in an off-the-shelf manner to a large variety of tasks. The contributions of this work are twofold: (i) we describe a feature set which is able to capture shape information as well as local context. Furthermore, the feature set is guaranteed to be generally applicable due to its high flexibility. (ii) we present an ensemble learning algorithm based on randomized trees, which can cope with exceptionally high dimensional feature spaces in an efficient manner. Contrary to classical approaches, subspaces are not split based on thresholds but by learning relations between features. The algorithm is validated on tissue from 133 human clear cell renal cell carcinoma patients (ccRCC) and on murine liver samples of eight mice. On both species RDFs compared favorably to state of the art methods and approaches the detection accuracy of trained pathologists.
    20 schema:editor Nbf0f376ce0ec48aca3efde7696815235
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N5df6425a08154746a14de09786567ed1
    25 schema:name Randomized Tree Ensembles for Object Detection in Computational Pathology
    26 schema:pagination 367-378
    27 schema:productId N07cc736e692649f382a4e36beeb22dc0
    28 N57a25ab7476042f68e8e43930edb2d4e
    29 Nbc122b9e465c4dbfa999e9b75d81109e
    30 schema:publisher N1432bf04a36241aeb34be940dcab2c34
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037439765
    32 https://doi.org/10.1007/978-3-642-10331-5_35
    33 schema:sdDatePublished 2019-04-16T07:27
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nca9020423aca4a26bd1ba38e3402878a
    36 schema:url https://link.springer.com/10.1007%2F978-3-642-10331-5_35
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N07cc736e692649f382a4e36beeb22dc0 schema:name readcube_id
    41 schema:value b258cc769749f5b762b9932274fe2497eb173675679e912441d85792e15f58a5
    42 rdf:type schema:PropertyValue
    43 N1432bf04a36241aeb34be940dcab2c34 schema:location Berlin, Heidelberg
    44 schema:name Springer Berlin Heidelberg
    45 rdf:type schema:Organisation
    46 N1e1e5999d7e243849742ef2785453f0e rdf:first sg:person.0707721122.05
    47 rdf:rest N746ba76b2ada4e209dbc8eba30a32589
    48 N2236ec78cb124385b289c12530b8fce7 schema:familyName Coming
    49 schema:givenName Daniel
    50 rdf:type schema:Person
    51 N54556bca8bff48eb9ea55b16924b9366 rdf:first Nb9f1b170e26f435fac1062b703c88690
    52 rdf:rest Nfe7c96e513bc453e968e4213b68a0d06
    53 N57a25ab7476042f68e8e43930edb2d4e schema:name doi
    54 schema:value 10.1007/978-3-642-10331-5_35
    55 rdf:type schema:PropertyValue
    56 N5df6425a08154746a14de09786567ed1 schema:isbn 978-3-642-10330-8
    57 978-3-642-10331-5
    58 schema:name Advances in Visual Computing
    59 rdf:type schema:Book
    60 N6224194c848541bc864fa146040fdd20 rdf:first sg:person.01144615220.05
    61 rdf:rest Nf1e71981f1f8469b9f5d1983c1259ea2
    62 N6605e151da7e43ed93323967d95755bb schema:familyName Hinkenjann
    63 schema:givenName André
    64 rdf:type schema:Person
    65 N68c5a2bcff7b410bb50d89081b39687f schema:familyName Koracin
    66 schema:givenName Darko
    67 rdf:type schema:Person
    68 N6b3cbe2ec2e94072913b53cff2fcef6e schema:familyName Bebis
    69 schema:givenName George
    70 rdf:type schema:Person
    71 N7090c7d1e55749c0b339db0490f59796 rdf:first N96ed6f4e8c6446d19e48d73374552439
    72 rdf:rest N88190c04a04c444fa381a8204a8bde22
    73 N72427143effa49d8bba6af80c912b891 schema:familyName Pajarola
    74 schema:givenName Renato
    75 rdf:type schema:Person
    76 N746ba76b2ada4e209dbc8eba30a32589 rdf:first sg:person.01246606335.63
    77 rdf:rest N6224194c848541bc864fa146040fdd20
    78 N75217e93a7cb4626b24da55ffc949931 schema:familyName Wang
    79 schema:givenName Junxian
    80 rdf:type schema:Person
    81 N77b976a670c24aaf92dc6acc2c8bcc0e schema:name Department of Pathology, Institute for Neuropathology, University Hospital, Zürich
    82 rdf:type schema:Organization
    83 N85554d161eff415dbbad8e42c027ade7 rdf:first Ne729a9dc229b4d6190835d03fa5897e4
    84 rdf:rest N8a1dd2a055354a87bf3b67f9ad865e82
    85 N88190c04a04c444fa381a8204a8bde22 rdf:first N72427143effa49d8bba6af80c912b891
    86 rdf:rest N54556bca8bff48eb9ea55b16924b9366
    87 N89c8b09654914c45bc79b8036105dab6 schema:name Competence Center for Systems Physiology and Metabolic Diseases, ETH Zürich
    88 Department of Pathology, Institute of Surgical Pathology, University Hospital Zürich
    89 rdf:type schema:Organization
    90 N8a1dd2a055354a87bf3b67f9ad865e82 rdf:first N68c5a2bcff7b410bb50d89081b39687f
    91 rdf:rest N91fe6a9a715040b09fc999bebbe68850
    92 N8feb7930f59c49e1b23f817b4b9cb2cb schema:name Department of Pathology, Institute of Surgical Pathology, University Hospital Zürich
    93 rdf:type schema:Organization
    94 N91fe6a9a715040b09fc999bebbe68850 rdf:first Ne1a27a8c4ab744b2af01022229d0b37c
    95 rdf:rest Nfb042de432194536955b3c72d8b55fa3
    96 N96ed6f4e8c6446d19e48d73374552439 schema:familyName Wang
    97 schema:givenName Junxian
    98 rdf:type schema:Person
    99 N9ec56f8f3dd04f57af17b127719db33e schema:name Department of Pathology, Institute for Neuropathology, University Hospital, Zürich
    100 rdf:type schema:Organization
    101 Na768d2a9dd10454b9d036a7aab8a874b rdf:first Nbc781d1d251849079c069f25809abaf1
    102 rdf:rest Nc1415b5394a94771bf246006b9896051
    103 Nae7f7d22d39a4e668eb62f1288ed6986 schema:familyName Silva
    104 schema:givenName Cláudio T.
    105 rdf:type schema:Person
    106 Nb7d8ef9eea4c43aeaae79282490736d8 rdf:first sg:person.01220251025.40
    107 rdf:rest Nce2c8471778e44fa96a7d968182805ad
    108 Nb9f1b170e26f435fac1062b703c88690 schema:familyName Lindstrom
    109 schema:givenName Peter
    110 rdf:type schema:Person
    111 Nbc122b9e465c4dbfa999e9b75d81109e schema:name dimensions_id
    112 schema:value pub.1037439765
    113 rdf:type schema:PropertyValue
    114 Nbc779e7f99234c4da8b69e3d744b5154 schema:familyName Boyle
    115 schema:givenName Richard
    116 rdf:type schema:Person
    117 Nbc781d1d251849079c069f25809abaf1 schema:familyName Encarnação
    118 schema:givenName Miguel L.
    119 rdf:type schema:Person
    120 Nbf0f376ce0ec48aca3efde7696815235 rdf:first N6b3cbe2ec2e94072913b53cff2fcef6e
    121 rdf:rest Nc9e99665e5b74eca831f619f49e8ea39
    122 Nc1415b5394a94771bf246006b9896051 rdf:first Nae7f7d22d39a4e668eb62f1288ed6986
    123 rdf:rest Nf6b37fa7044741ecb80efafd3f5bda88
    124 Nc9e99665e5b74eca831f619f49e8ea39 rdf:first Nbc779e7f99234c4da8b69e3d744b5154
    125 rdf:rest N85554d161eff415dbbad8e42c027ade7
    126 Nca9020423aca4a26bd1ba38e3402878a schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Nce2c8471778e44fa96a7d968182805ad rdf:first sg:person.0706733305.60
    129 rdf:rest N1e1e5999d7e243849742ef2785453f0e
    130 Ndd4e46ddcfe0428c8cabedda5442a7be schema:name Department of Pathology, Institute for Neuropathology, University Hospital, Zürich
    131 rdf:type schema:Organization
    132 Ne1a27a8c4ab744b2af01022229d0b37c schema:familyName Kuno
    133 schema:givenName Yoshinori
    134 rdf:type schema:Person
    135 Ne33d11ceac6f4f0a9c95c9164dada963 rdf:first sg:person.01266521565.31
    136 rdf:rest Nb7d8ef9eea4c43aeaae79282490736d8
    137 Ne729a9dc229b4d6190835d03fa5897e4 schema:familyName Parvin
    138 schema:givenName Bahram
    139 rdf:type schema:Person
    140 Ne9104e19864f4118aedb796d24b56aa1 schema:familyName Wang
    141 schema:givenName Jun-Xuan
    142 rdf:type schema:Person
    143 Nf1e71981f1f8469b9f5d1983c1259ea2 rdf:first sg:person.01220203604.08
    144 rdf:rest rdf:nil
    145 Nf6b37fa7044741ecb80efafd3f5bda88 rdf:first N2236ec78cb124385b289c12530b8fce7
    146 rdf:rest rdf:nil
    147 Nfaa7b4cfab8f4818a9512cef98e7e80a rdf:first Ne9104e19864f4118aedb796d24b56aa1
    148 rdf:rest N7090c7d1e55749c0b339db0490f59796
    149 Nfb042de432194536955b3c72d8b55fa3 rdf:first N75217e93a7cb4626b24da55ffc949931
    150 rdf:rest Nfaa7b4cfab8f4818a9512cef98e7e80a
    151 Nfe7c96e513bc453e968e4213b68a0d06 rdf:first N6605e151da7e43ed93323967d95755bb
    152 rdf:rest Na768d2a9dd10454b9d036a7aab8a874b
    153 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Information and Computing Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Artificial Intelligence and Image Processing
    158 rdf:type schema:DefinedTerm
    159 sg:person.01144615220.05 schema:affiliation N9ec56f8f3dd04f57af17b127719db33e
    160 schema:familyName Aguzzi
    161 schema:givenName Adriano
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144615220.05
    163 rdf:type schema:Person
    164 sg:person.01220203604.08 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    165 schema:familyName Buhmann
    166 schema:givenName Joachim M.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220203604.08
    168 rdf:type schema:Person
    169 sg:person.01220251025.40 schema:affiliation Ndd4e46ddcfe0428c8cabedda5442a7be
    170 schema:familyName Haybaeck
    171 schema:givenName Johannes
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220251025.40
    173 rdf:type schema:Person
    174 sg:person.01246606335.63 schema:affiliation N89c8b09654914c45bc79b8036105dab6
    175 schema:familyName Moch
    176 schema:givenName Holger
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246606335.63
    178 rdf:type schema:Person
    179 sg:person.01266521565.31 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    180 schema:familyName Fuchs
    181 schema:givenName Thomas J.
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266521565.31
    183 rdf:type schema:Person
    184 sg:person.0706733305.60 schema:affiliation N8feb7930f59c49e1b23f817b4b9cb2cb
    185 schema:familyName Wild
    186 schema:givenName Peter J.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706733305.60
    188 rdf:type schema:Person
    189 sg:person.0707721122.05 schema:affiliation N77b976a670c24aaf92dc6acc2c8bcc0e
    190 schema:familyName Heikenwalder
    191 schema:givenName Mathias
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707721122.05
    193 rdf:type schema:Person
    194 sg:pub.10.1007/978-3-540-69321-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026816074
    195 https://doi.org/10.1007/978-3-540-69321-5_18
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/978-3-540-75757-3_75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012827180
    198 https://doi.org/10.1007/978-3-540-75757-3_75
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/978-3-540-75759-7_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024656279
    201 https://doi.org/10.1007/978-3-540-75759-7_35
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/978-3-540-88682-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052337121
    204 https://doi.org/10.1007/978-3-540-88682-2_19
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10994-006-6226-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730804
    207 https://doi.org/10.1007/s10994-006-6226-1
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    210 https://doi.org/10.1023/a:1010933404324
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/nav.3800020109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032778056
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.csda.2006.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046845141
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.humpath.2007.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033692752
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1080/14639230500077444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030405755
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/titb.2005.847515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656377
    225 rdf:type schema:CreativeWork
    226 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    227 schema:name Competence Center for Systems Physiology and Metabolic Diseases, ETH Zürich
    228 Department of Computer Science, ETH Zürich, Zürich, Switzerland
    229 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...