Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Chauã C. Queirolo , Sídnei A. Drovetto , Luciano Silva , Olga R. P. Bellon , Maurício P. Segundo

ABSTRACT

In this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region’s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach. More... »

PAGES

213-224

References to SciGraph publications

  • 1986-01. Convergence of an annealing algorithm in MATHEMATICAL PROGRAMMING
  • Book

    TITLE

    Computer Vision and Computer Graphics. Theory and Applications

    ISBN

    978-3-642-10225-7
    978-3-642-10226-4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17

    DOI

    http://dx.doi.org/10.1007/978-3-642-10226-4_17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036925198


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Queirolo", 
            "givenName": "Chau\u00e3 C.", 
            "id": "sg:person.0623217071.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623217071.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drovetto", 
            "givenName": "S\u00eddnei A.", 
            "id": "sg:person.014755722467.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755722467.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Luciano", 
            "id": "sg:person.011255035201.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellon", 
            "givenName": "Olga R. P.", 
            "id": "sg:person.016130316757.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Paran\u00e1", 
              "id": "https://www.grid.ac/institutes/grid.20736.30", 
              "name": [
                "IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Segundo", 
            "givenName": "Maur\u00edcio P.", 
            "id": "sg:person.01005560671.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005560671.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1006/cviu.1999.0832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025309926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0262-8856(92)90066-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040803351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0262-8856(92)90066-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040803351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01582166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049532067", 
              "https://doi.org/10.1007/bf01582166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.121791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.667881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tifs.2007.916287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061629542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.1017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.220.4598.671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062526985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciap.2007.4362775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093901753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/im.2001.924423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095394103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/im.2003.1240258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095578498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/avss.2006.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095640683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095725797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095725797"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "In this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region\u2019s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach.", 
        "editor": [
          {
            "familyName": "Ranchordas", 
            "givenName": "AlpeshKumar", 
            "type": "Person"
          }, 
          {
            "familyName": "Ara\u00fajo", 
            "givenName": "H\u00e9lder J.", 
            "type": "Person"
          }, 
          {
            "familyName": "Pereira", 
            "givenName": "Jo\u00e3o Madeiras", 
            "type": "Person"
          }, 
          {
            "familyName": "Braz", 
            "givenName": "Jos\u00e9", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-10226-4_17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-10225-7", 
            "978-3-642-10226-4"
          ], 
          "name": "Computer Vision and Computer Graphics. Theory and Applications", 
          "type": "Book"
        }, 
        "name": "Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition", 
        "pagination": "213-224", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036925198"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-10226-4_17"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "afe5e78344580b6a4d4592c9d525d4e8908021fc0120722556ec82a9d9293945"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-10226-4_17", 
          "https://app.dimensions.ai/details/publication/pub.1036925198"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53001_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-10226-4_17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-10226-4_17 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N735b466805134c2ba98635c81a9151c6
    4 schema:citation sg:pub.10.1007/bf01582166
    5 https://doi.org/10.1006/cviu.1999.0832
    6 https://doi.org/10.1016/0262-8856(92)90066-c
    7 https://doi.org/10.1109/34.121791
    8 https://doi.org/10.1109/34.667881
    9 https://doi.org/10.1109/avss.2006.35
    10 https://doi.org/10.1109/cvpr.2005.584
    11 https://doi.org/10.1109/iciap.2007.4362775
    12 https://doi.org/10.1109/im.2001.924423
    13 https://doi.org/10.1109/im.2003.1240258
    14 https://doi.org/10.1109/tifs.2007.916287
    15 https://doi.org/10.1109/tpami.2005.108
    16 https://doi.org/10.1109/tpami.2006.15
    17 https://doi.org/10.1109/tpami.2006.210
    18 https://doi.org/10.1109/tpami.2007.1017
    19 https://doi.org/10.1126/science.220.4598.671
    20 schema:datePublished 2009
    21 schema:datePublishedReg 2009-01-01
    22 schema:description In this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region’s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach.
    23 schema:editor N682c8b4bceb14600996e3fdd30283dde
    24 schema:genre chapter
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Na44e5b3f3de64ede954f47b5c91afaf6
    28 schema:name Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition
    29 schema:pagination 213-224
    30 schema:productId N00702bf9e0e04abda26b706c4867dfa5
    31 N87ab365cce74427d8cf55017ac18db93
    32 Nef0d1c8eae9e48c9aec85c84918412fa
    33 schema:publisher N2f54aabe800b4c5c9ddf92168b252ea3
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036925198
    35 https://doi.org/10.1007/978-3-642-10226-4_17
    36 schema:sdDatePublished 2019-04-16T07:27
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N35485f2518574aa9a5a9da9ca398c583
    39 schema:url https://link.springer.com/10.1007%2F978-3-642-10226-4_17
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset chapters
    42 rdf:type schema:Chapter
    43 N00702bf9e0e04abda26b706c4867dfa5 schema:name dimensions_id
    44 schema:value pub.1036925198
    45 rdf:type schema:PropertyValue
    46 N2973d0810f4d4f559490f369410d6c2e rdf:first sg:person.014755722467.02
    47 rdf:rest N93c8a65feb75483092a0db8b7f1ebd60
    48 N2ee6fe20a490424696e95e87be7d8fd3 rdf:first sg:person.01005560671.64
    49 rdf:rest rdf:nil
    50 N2f54aabe800b4c5c9ddf92168b252ea3 schema:location Berlin, Heidelberg
    51 schema:name Springer Berlin Heidelberg
    52 rdf:type schema:Organisation
    53 N35485f2518574aa9a5a9da9ca398c583 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N641f036e7a6b4efa947ae9696e02fa51 schema:familyName Ranchordas
    56 schema:givenName AlpeshKumar
    57 rdf:type schema:Person
    58 N682c8b4bceb14600996e3fdd30283dde rdf:first N641f036e7a6b4efa947ae9696e02fa51
    59 rdf:rest N790171e563b34536b8bfdaf06eb0d7d8
    60 N735b466805134c2ba98635c81a9151c6 rdf:first sg:person.0623217071.72
    61 rdf:rest N2973d0810f4d4f559490f369410d6c2e
    62 N76e364135e35448d987f7bf359393d17 rdf:first Na5aedc78d30b463ab9bf864316332a74
    63 rdf:rest rdf:nil
    64 N790171e563b34536b8bfdaf06eb0d7d8 rdf:first Nf029b9a50f454eeda1e3b1e62ceee820
    65 rdf:rest Na35de61b8af54f21be06e8d25da94dd8
    66 N87ab365cce74427d8cf55017ac18db93 schema:name doi
    67 schema:value 10.1007/978-3-642-10226-4_17
    68 rdf:type schema:PropertyValue
    69 N931cdef3413448ac8a99e96bfc7f158d schema:familyName Pereira
    70 schema:givenName João Madeiras
    71 rdf:type schema:Person
    72 N93c8a65feb75483092a0db8b7f1ebd60 rdf:first sg:person.011255035201.31
    73 rdf:rest Nd3ffed8a15bd48aba52fb74ab4c8e23d
    74 Na35de61b8af54f21be06e8d25da94dd8 rdf:first N931cdef3413448ac8a99e96bfc7f158d
    75 rdf:rest N76e364135e35448d987f7bf359393d17
    76 Na44e5b3f3de64ede954f47b5c91afaf6 schema:isbn 978-3-642-10225-7
    77 978-3-642-10226-4
    78 schema:name Computer Vision and Computer Graphics. Theory and Applications
    79 rdf:type schema:Book
    80 Na5aedc78d30b463ab9bf864316332a74 schema:familyName Braz
    81 schema:givenName José
    82 rdf:type schema:Person
    83 Nd3ffed8a15bd48aba52fb74ab4c8e23d rdf:first sg:person.016130316757.62
    84 rdf:rest N2ee6fe20a490424696e95e87be7d8fd3
    85 Nef0d1c8eae9e48c9aec85c84918412fa schema:name readcube_id
    86 schema:value afe5e78344580b6a4d4592c9d525d4e8908021fc0120722556ec82a9d9293945
    87 rdf:type schema:PropertyValue
    88 Nf029b9a50f454eeda1e3b1e62ceee820 schema:familyName Araújo
    89 schema:givenName Hélder J.
    90 rdf:type schema:Person
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:person.01005560671.64 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    98 schema:familyName Segundo
    99 schema:givenName Maurício P.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005560671.64
    101 rdf:type schema:Person
    102 sg:person.011255035201.31 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    103 schema:familyName Silva
    104 schema:givenName Luciano
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31
    106 rdf:type schema:Person
    107 sg:person.014755722467.02 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    108 schema:familyName Drovetto
    109 schema:givenName Sídnei A.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755722467.02
    111 rdf:type schema:Person
    112 sg:person.016130316757.62 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    113 schema:familyName Bellon
    114 schema:givenName Olga R. P.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62
    116 rdf:type schema:Person
    117 sg:person.0623217071.72 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
    118 schema:familyName Queirolo
    119 schema:givenName Chauã C.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623217071.72
    121 rdf:type schema:Person
    122 sg:pub.10.1007/bf01582166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532067
    123 https://doi.org/10.1007/bf01582166
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1006/cviu.1999.0832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025309926
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0262-8856(92)90066-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040803351
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/34.121791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155634
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/avss.2006.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095640683
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/cvpr.2005.584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095725797
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/iciap.2007.4362775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093901753
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/im.2001.924423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095394103
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/im.2003.1240258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095578498
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tifs.2007.916287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629542
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tpami.2005.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742779
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tpami.2006.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742995
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tpami.2006.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743045
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tpami.2007.1017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743156
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
    156 schema:name IMAGO Research Group, Universidade Federal do Paraná, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...