Ontology type: schema:Chapter
2009
AUTHORSChauã C. Queirolo , Sídnei A. Drovetto , Luciano Silva , Olga R. P. Bellon , Maurício P. Segundo
ABSTRACTIn this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region’s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach. More... »
PAGES213-224
Computer Vision and Computer Graphics. Theory and Applications
ISBN
978-3-642-10225-7
978-3-642-10226-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17
DOIhttp://dx.doi.org/10.1007/978-3-642-10226-4_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036925198
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Queirolo",
"givenName": "Chau\u00e3 C.",
"id": "sg:person.0623217071.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623217071.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Drovetto",
"givenName": "S\u00eddnei A.",
"id": "sg:person.014755722467.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755722467.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Silva",
"givenName": "Luciano",
"id": "sg:person.011255035201.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Bellon",
"givenName": "Olga R. P.",
"id": "sg:person.016130316757.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Federal University of Paran\u00e1",
"id": "https://www.grid.ac/institutes/grid.20736.30",
"name": [
"IMAGO Research Group, Universidade Federal do Paran\u00e1, P.O. Box 19092, 81531-980, Curitiba, PR, Brazil"
],
"type": "Organization"
},
"familyName": "Segundo",
"givenName": "Maur\u00edcio P.",
"id": "sg:person.01005560671.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005560671.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1006/cviu.1999.0832",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025309926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0262-8856(92)90066-c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040803351"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0262-8856(92)90066-c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040803351"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01582166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049532067",
"https://doi.org/10.1007/bf01582166"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.121791",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061155634"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/34.667881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061156743"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tifs.2007.916287",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061629542"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2005.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061742779"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2006.15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061742995"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2006.210",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061743045"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2007.1017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061743156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.220.4598.671",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062526985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iciap.2007.4362775",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093901753"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/im.2001.924423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095394103"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/im.2003.1240258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095578498"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/avss.2006.35",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095640683"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2005.584",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095725797"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2005.584",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095725797"
],
"type": "CreativeWork"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "In this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region\u2019s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach.",
"editor": [
{
"familyName": "Ranchordas",
"givenName": "AlpeshKumar",
"type": "Person"
},
{
"familyName": "Ara\u00fajo",
"givenName": "H\u00e9lder J.",
"type": "Person"
},
{
"familyName": "Pereira",
"givenName": "Jo\u00e3o Madeiras",
"type": "Person"
},
{
"familyName": "Braz",
"givenName": "Jos\u00e9",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-10226-4_17",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-10225-7",
"978-3-642-10226-4"
],
"name": "Computer Vision and Computer Graphics. Theory and Applications",
"type": "Book"
},
"name": "Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition",
"pagination": "213-224",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036925198"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-10226-4_17"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"afe5e78344580b6a4d4592c9d525d4e8908021fc0120722556ec82a9d9293945"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-10226-4_17",
"https://app.dimensions.ai/details/publication/pub.1036925198"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53001_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-10226-4_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-10226-4_17'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
23 PREDICATES
43 URIs
20 LITERALS
8 BLANK NODES