Ontology type: schema:Chapter Open Access: True
2010
AUTHORSM. Lagarde , P. Andry , P. Gaussier , S. Boucenna , L. Hafemeister
ABSTRACTIn this paper, we will show that different kinds of interactive behaviors can emerge according to the kind of proprioceptive function available in a given sensori-motor system. We will study three different examples. In the first one, an internal proprioceptive signal is available for the learning of the visuo-motor coordination between an arm and a camera. An imitation behavior can emerge when the robot’s eye focuses on the hand of the experimenter instead of its own hand. The imitative behavior results from the error minimization between the visual signal and the proprioceptive signal. In the second example, we will show that similar modifications of the robot’s initial dynamics allows to learn some of the space-time properties of more complex behaviors under the form of a sequence of sensori-motor associations. In the third example, a robot head has to recognize the facial expression of the human caregiver. Yet, the robot has no visual feedback of its own facial expression. The human expressive resonance will allow the robot to select the visual features relevant for a particular facial expression. As a result, after few minutes of interactions, the robot can imitates the facial expression of the human partner. We will show that the different proprioceptive signals used in the examples can be seen as bootstrap mechanisms for more complex interactions. Applied as a crude model of the human, we will propose that these mechanisms play an important role in the process of individuation. More... »
PAGES43-63
From Motor Learning to Interaction Learning in Robots
ISBN
978-3-642-05180-7
978-3-642-05181-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-05181-4_3
DOIhttp://dx.doi.org/10.1007/978-3-642-05181-4_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051391752
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Information Processing and System Research Lab",
"id": "https://www.grid.ac/institutes/grid.463844.9",
"name": [
"ETIS, ENSEA, Univ Cergy-pontoise, CNRS UMR 8051, F-95000, Cergy-Pontoise"
],
"type": "Organization"
},
"familyName": "Lagarde",
"givenName": "M.",
"id": "sg:person.014114521627.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114521627.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Information Processing and System Research Lab",
"id": "https://www.grid.ac/institutes/grid.463844.9",
"name": [
"ETIS, ENSEA, Univ Cergy-pontoise, CNRS UMR 8051, F-95000, Cergy-Pontoise"
],
"type": "Organization"
},
"familyName": "Andry",
"givenName": "P.",
"id": "sg:person.012152621257.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012152621257.16"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"IUF"
],
"type": "Organization"
},
"familyName": "Gaussier",
"givenName": "P.",
"id": "sg:person.01041272554.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Information Processing and System Research Lab",
"id": "https://www.grid.ac/institutes/grid.463844.9",
"name": [
"ETIS, ENSEA, Univ Cergy-pontoise, CNRS UMR 8051, F-95000, Cergy-Pontoise"
],
"type": "Organization"
},
"familyName": "Boucenna",
"givenName": "S.",
"id": "sg:person.07730435642.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07730435642.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Information Processing and System Research Lab",
"id": "https://www.grid.ac/institutes/grid.463844.9",
"name": [
"ETIS, ENSEA, Univ Cergy-pontoise, CNRS UMR 8051, F-95000, Cergy-Pontoise"
],
"type": "Organization"
},
"familyName": "Hafemeister",
"givenName": "L.",
"id": "sg:person.010726607664.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726607664.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1017/cbo9780511489808.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001044091"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-27833-7_18",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001253955",
"https://doi.org/10.1007/978-3-540-27833-7_18"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0926-6410(92)90003-a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001794667"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0926-6410(92)90003-a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001794667"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/105971230401200203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004786902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/105971230401200203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004786902"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-05181-4_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005576635",
"https://doi.org/10.1007/978-3-642-05181-4_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-05181-4_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005576635",
"https://doi.org/10.1007/978-3-642-05181-4_15"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0921-8890(95)00049-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005616328"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-9450.1963.tb01326.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006990773"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/088395198117596",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009321480"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74690-4_95",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009776103",
"https://doi.org/10.1007/978-3-540-74690-4_95"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74690-4_95",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009776103",
"https://doi.org/10.1007/978-3-540-74690-4_95"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0278364902021010096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013802171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0278364902021010096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013802171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neunet.2009.01.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018351028"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/1362361300004002003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020953217"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/1362361300004002003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020953217"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rstb.2002.1261",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026524765"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00422-002-0364-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026775886",
"https://doi.org/10.1007/s00422-002-0364-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/0033-295x.95.1.49",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029502400"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-05181-4_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030429995",
"https://doi.org/10.1007/978-3-642-05181-4_14"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-05181-4_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030429995",
"https://doi.org/10.1007/978-3-642-05181-4_14"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10514-009-9121-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036163088",
"https://doi.org/10.1007/s10514-009-9121-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10514-009-9121-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036163088",
"https://doi.org/10.1007/s10514-009-9121-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10514-009-9121-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036163088",
"https://doi.org/10.1007/s10514-009-9121-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-4115(97)80121-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038179048"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10015-004-0293-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039090518",
"https://doi.org/10.1007/s10015-004-0293-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48304-7_40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041140190",
"https://doi.org/10.1007/3-540-48304-7_40"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48304-7_40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041140190",
"https://doi.org/10.1007/3-540-48304-7_40"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00337259",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045614723",
"https://doi.org/10.1007/bf00337259"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00337259",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045614723",
"https://doi.org/10.1007/bf00337259"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0926-6410(02)00062-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048090989"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0028-3932(98)00006-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049531634"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/0735-7044.99.5.1006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049686709"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0893-6080(94)90092-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052031775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0893-6080(94)90092-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052031775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/3468.952717",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061157851"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.198.4312.75",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062515860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/robot.2000.846360",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093826163"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ijcnn.2005.1555949",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094521781"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/roman.2003.1251814",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095508653"
],
"type": "CreativeWork"
}
],
"datePublished": "2010",
"datePublishedReg": "2010-01-01",
"description": "In this paper, we will show that different kinds of interactive behaviors can emerge according to the kind of proprioceptive function available in a given sensori-motor system. We will study three different examples. In the first one, an internal proprioceptive signal is available for the learning of the visuo-motor coordination between an arm and a camera. An imitation behavior can emerge when the robot\u2019s eye focuses on the hand of the experimenter instead of its own hand. The imitative behavior results from the error minimization between the visual signal and the proprioceptive signal. In the second example, we will show that similar modifications of the robot\u2019s initial dynamics allows to learn some of the space-time properties of more complex behaviors under the form of a sequence of sensori-motor associations. In the third example, a robot head has to recognize the facial expression of the human caregiver. Yet, the robot has no visual feedback of its own facial expression. The human expressive resonance will allow the robot to select the visual features relevant for a particular facial expression. As a result, after few minutes of interactions, the robot can imitates the facial expression of the human partner. We will show that the different proprioceptive signals used in the examples can be seen as bootstrap mechanisms for more complex interactions. Applied as a crude model of the human, we will propose that these mechanisms play an important role in the process of individuation.",
"editor": [
{
"familyName": "Sigaud",
"givenName": "Olivier",
"type": "Person"
},
{
"familyName": "Peters",
"givenName": "Jan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-05181-4_3",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-05180-7",
"978-3-642-05181-4"
],
"name": "From Motor Learning to Interaction Learning in Robots",
"type": "Book"
},
"name": "Proprioception and Imitation: On the Road to Agent Individuation",
"pagination": "43-63",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051391752"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-05181-4_3"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"f4cf3df80334aaa20d7d8019916f67de648f970aa83925b5a91bc64dea2d1aa4"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-05181-4_3",
"https://app.dimensions.ai/details/publication/pub.1051391752"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57868_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-642-05181-4_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-05181-4_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-05181-4_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-05181-4_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-05181-4_3'
This table displays all metadata directly associated to this object as RDF triples.
199 TRIPLES
23 PREDICATES
57 URIs
20 LITERALS
8 BLANK NODES