Ontology type: schema:Chapter
2009
AUTHORS ABSTRACTThis paper demonstrates that Affinity Propagation (AP) outperforms Kmeans for sub-topic clustering of web image retrieval. A SVM visual images retrieval system is built, and then clustering is performed on the results of each topic. Then we heighten the diversity of the 20 top results, by moving into the top the image with the lowest rank in each cluster. Using 45 dimensions Profile Entropy visual Features, we show for the 39 topics of the imageCLEF08 web image retrieval clustering campaign on 20K IAPR images, that the Cluster-Recall (CR) after AP is 13% better than the baseline without clustering, while the Precision stays almost the same. Moreover, CR and Precision without clustering are altered by Kmeans. We finally discuss that some high-level topics require text information for good CR, and that more discriminant visual features would also allow Precision enhancement after AP. More... »
PAGES628-631
Evaluating Systems for Multilingual and Multimodal Information Access
ISBN
978-3-642-04446-5
978-3-642-04447-2
http://scigraph.springernature.com/pub.10.1007/978-3-642-04447-2_78
DOIhttp://dx.doi.org/10.1007/978-3-642-04447-2_78
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036898399
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universite De Toulon Et Du Var",
"id": "https://www.grid.ac/institutes/grid.12611.35",
"name": [
"Systems & Information Sciences Lab., UMR CNRS 6168, & Univ. Sud Toulon-Var, France"
],
"type": "Organization"
},
"familyName": "Glotin",
"givenName": "Herv\u00e9",
"id": "sg:person.016622300103.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universite De Toulon Et Du Var",
"id": "https://www.grid.ac/institutes/grid.12611.35",
"name": [
"Systems & Information Sciences Lab., UMR CNRS 6168, & Univ. Sud Toulon-Var, France"
],
"type": "Organization"
},
"familyName": "Zhao",
"givenName": "Zhong-Qiu",
"id": "sg:person.016102547154.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102547154.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1126/science.1136800",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017347292"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-04447-2_72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052833888",
"https://doi.org/10.1007/978-3-642-04447-2_72"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icassp.2008.4517838",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095351518"
],
"type": "CreativeWork"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "This paper demonstrates that Affinity Propagation (AP) outperforms Kmeans for sub-topic clustering of web image retrieval. A SVM visual images retrieval system is built, and then clustering is performed on the results of each topic. Then we heighten the diversity of the 20 top results, by moving into the top the image with the lowest rank in each cluster. Using 45 dimensions Profile Entropy visual Features, we show for the 39 topics of the imageCLEF08 web image retrieval clustering campaign on 20K IAPR images, that the Cluster-Recall (CR) after AP is 13% better than the baseline without clustering, while the Precision stays almost the same. Moreover, CR and Precision without clustering are altered by Kmeans. We finally discuss that some high-level topics require text information for good CR, and that more discriminant visual features would also allow Precision enhancement after AP.",
"editor": [
{
"familyName": "Peters",
"givenName": "Carol",
"type": "Person"
},
{
"familyName": "Deselaers",
"givenName": "Thomas",
"type": "Person"
},
{
"familyName": "Ferro",
"givenName": "Nicola",
"type": "Person"
},
{
"familyName": "Gonzalo",
"givenName": "Julio",
"type": "Person"
},
{
"familyName": "Jones",
"givenName": "Gareth J. F.",
"type": "Person"
},
{
"familyName": "Kurimo",
"givenName": "Mikko",
"type": "Person"
},
{
"familyName": "Mandl",
"givenName": "Thomas",
"type": "Person"
},
{
"familyName": "Pe\u00f1as",
"givenName": "Anselmo",
"type": "Person"
},
{
"familyName": "Petras",
"givenName": "Vivien",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-04447-2_78",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-04446-5",
"978-3-642-04447-2"
],
"name": "Evaluating Systems for Multilingual and Multimodal Information Access",
"type": "Book"
},
"name": "Visual Affinity Propagation Improves Sub-topics Diversity without Loss of Precision in Web Photo Retrieval",
"pagination": "628-631",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-04447-2_78"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"afc5163698046e81b3901c9db3f2c67d2c54a2a716b08bca6e9888f5b58be5c2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036898399"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-04447-2_78",
"https://app.dimensions.ai/details/publication/pub.1036898399"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T22:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000266.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-04447-2_78"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04447-2_78'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04447-2_78'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04447-2_78'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04447-2_78'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
23 PREDICATES
30 URIs
20 LITERALS
8 BLANK NODES