Improving Energy Efficiency in Buildings Using Machine Intelligence View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Javier Sedano , José Ramón Villar , Leticia Curiel , Enrique de la Cal , Emilio Corchado

ABSTRACT

Improving the detection of thermal insulation in buildings –which includes the development of models for heating and ventilation processes and fabric gain - could significantly increase building energy efficiency and substantially contribute to reductions in energy consumption and in the carbon footprints of domestic heating systems. Thermal insulation standards are now contractual obligations in new buildings, although poor energy efficiency is often a defining characteristic of buildings built before the introduction of those standards. Lighting, occupancy, set point temperature profiles, air conditioning and ventilation services all increase the complexity of measuring insulation efficiency. The identification of thermal insulation failure can help to reduce energy consumption in heating systems. Conventional methods can be greatly improved through the application of hybridized machine learning techniques to detect thermal insulation failures when a building is in operation. A three-step procedure is proposed in this paper that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modelled, for each building type and climate zone. Secondly, Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, neural projections and identification techniques are applied, in order to detect fluctuations in room temperatures and, in consequence, thermal insulation failures. The reliability of the proposed method is validated in three winter zone C cities in Spain. Although a great deal of further research remains to be done in this field, the proposed system is expected to outperform conventional methods described in Spanish building codes that are used to calculate energetic profiles in domestic and residential buildings. More... »

PAGES

773-782

References to SciGraph publications

Book

TITLE

Intelligent Data Engineering and Automated Learning - IDEAL 2009

ISBN

978-3-642-04393-2
978-3-642-04394-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_95

DOI

http://dx.doi.org/10.1007/978-3-642-04394-9_95

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026434736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Building", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/12", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Built Environment and Design", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Burgos", 
          "id": "https://www.grid.ac/institutes/grid.23520.36", 
          "name": [
            "Department of Electromechanical Engineering, University of Burgos, Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedano", 
        "givenName": "Javier", 
        "id": "sg:person.012345130667.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Computer Science, University of Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villar", 
        "givenName": "Jos\u00e9 Ram\u00f3n", 
        "id": "sg:person.015655732472.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgos", 
          "id": "https://www.grid.ac/institutes/grid.23520.36", 
          "name": [
            "Department of Civil Engineering, University of Burgos, Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Curiel", 
        "givenName": "Leticia", 
        "id": "sg:person.014244552651.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244552651.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Computer Science, University of Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Cal", 
        "givenName": "Enrique", 
        "id": "sg:person.016056436767.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Burgos", 
          "id": "https://www.grid.ac/institutes/grid.23520.36", 
          "name": [
            "Department of Civil Engineering, University of Burgos, Burgos, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "id": "sg:person.01104425666.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104425666.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010896434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-1323(90)90035-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013063728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-1323(90)90035-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013063728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09528130310001611603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018917874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0071325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033321863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87656-4_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038785057", 
          "https://doi.org/10.1007/978-3-540-87656-4_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87656-4_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038785057", 
          "https://doi.org/10.1007/978-3-540-87656-4_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2097-1_189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041206447", 
          "https://doi.org/10.1007/978-1-4471-2097-1_189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2009.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050219575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000023673.23078.a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052292137", 
          "https://doi.org/10.1023/b:dami.0000023673.23078.a3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1974.224051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061456026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2005.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2899207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062091666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218001403002915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062949392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176346703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ica-2009-0302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109704911", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0453-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704911", 
          "https://doi.org/10.1007/978-1-4471-0453-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0453-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704911", 
          "https://doi.org/10.1007/978-1-4471-0453-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Improving the detection of thermal insulation in buildings \u2013which includes the development of models for heating and ventilation processes and fabric gain - could significantly increase building energy efficiency and substantially contribute to reductions in energy consumption and in the carbon footprints of domestic heating systems. Thermal insulation standards are now contractual obligations in new buildings, although poor energy efficiency is often a defining characteristic of buildings built before the introduction of those standards. Lighting, occupancy, set point temperature profiles, air conditioning and ventilation services all increase the complexity of measuring insulation efficiency. The identification of thermal insulation failure can help to reduce energy consumption in heating systems. Conventional methods can be greatly improved through the application of hybridized machine learning techniques to detect thermal insulation failures when a building is in operation. A three-step procedure is proposed in this paper that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modelled, for each building type and climate zone. Secondly, Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, neural projections and identification techniques are applied, in order to detect fluctuations in room temperatures and, in consequence, thermal insulation failures. The reliability of the proposed method is validated in three winter zone C cities in Spain. Although a great deal of further research remains to be done in this field, the proposed system is expected to outperform conventional methods described in Spanish building codes that are used to calculate energetic profiles in domestic and residential buildings.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04394-9_95", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04393-2", 
        "978-3-642-04394-9"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning - IDEAL 2009", 
      "type": "Book"
    }, 
    "name": "Improving Energy Efficiency in Buildings Using Machine Intelligence", 
    "pagination": "773-782", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04394-9_95"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7def1df9ea2144ed9fdfb3ee960ad2f3551404576d2c826b55e087605f8a9dc6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026434736"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04394-9_95", 
      "https://app.dimensions.ai/details/publication/pub.1026434736"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000587.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04394-9_95"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_95'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_95'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_95'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_95'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04394-9_95 schema:about anzsrc-for:12
2 anzsrc-for:1202
3 schema:author N63eecf84734248e1a016645c40beac67
4 schema:citation sg:pub.10.1007/978-1-4471-0453-7
5 sg:pub.10.1007/978-1-4471-2097-1_189
6 sg:pub.10.1007/978-3-540-87656-4_72
7 sg:pub.10.1023/b:dami.0000023673.23078.a3
8 https://app.dimensions.ai/details/publication/pub.1109704911
9 https://doi.org/10.1016/0360-1323(90)90035-p
10 https://doi.org/10.1016/0893-6080(89)90020-8
11 https://doi.org/10.1016/j.apenergy.2009.01.012
12 https://doi.org/10.1016/j.applthermaleng.2008.12.024
13 https://doi.org/10.1037/h0071325
14 https://doi.org/10.1080/09528130310001611603
15 https://doi.org/10.1109/t-c.1974.224051
16 https://doi.org/10.1109/tkde.2005.66
17 https://doi.org/10.1115/1.2899207
18 https://doi.org/10.1142/s0218001403002915
19 https://doi.org/10.1214/aos/1176346703
20 https://doi.org/10.3233/ica-2009-0302
21 schema:datePublished 2009
22 schema:datePublishedReg 2009-01-01
23 schema:description Improving the detection of thermal insulation in buildings –which includes the development of models for heating and ventilation processes and fabric gain - could significantly increase building energy efficiency and substantially contribute to reductions in energy consumption and in the carbon footprints of domestic heating systems. Thermal insulation standards are now contractual obligations in new buildings, although poor energy efficiency is often a defining characteristic of buildings built before the introduction of those standards. Lighting, occupancy, set point temperature profiles, air conditioning and ventilation services all increase the complexity of measuring insulation efficiency. The identification of thermal insulation failure can help to reduce energy consumption in heating systems. Conventional methods can be greatly improved through the application of hybridized machine learning techniques to detect thermal insulation failures when a building is in operation. A three-step procedure is proposed in this paper that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modelled, for each building type and climate zone. Secondly, Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, neural projections and identification techniques are applied, in order to detect fluctuations in room temperatures and, in consequence, thermal insulation failures. The reliability of the proposed method is validated in three winter zone C cities in Spain. Although a great deal of further research remains to be done in this field, the proposed system is expected to outperform conventional methods described in Spanish building codes that are used to calculate energetic profiles in domestic and residential buildings.
24 schema:editor Nc7e417d3921e423aa234d454a9ca89d1
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N862bbfdd3c6e4da4be99875214e63a9f
29 schema:name Improving Energy Efficiency in Buildings Using Machine Intelligence
30 schema:pagination 773-782
31 schema:productId N39bf0e666c144362bcc978a8fb83a087
32 N5fc81618be544646ac191b115263254b
33 Nce3b1d77c34342c6b80715e240f491e3
34 schema:publisher Ncd4048f7f2db410590e133246b4fbb22
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026434736
36 https://doi.org/10.1007/978-3-642-04394-9_95
37 schema:sdDatePublished 2019-04-15T15:01
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc097e3ff6e244908b8aa95f483ef811a
40 schema:url http://link.springer.com/10.1007/978-3-642-04394-9_95
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N00f7f7bf9e304a97929146cbf81d9d76 schema:familyName Corchado
45 schema:givenName Emilio
46 rdf:type schema:Person
47 N39bf0e666c144362bcc978a8fb83a087 schema:name dimensions_id
48 schema:value pub.1026434736
49 rdf:type schema:PropertyValue
50 N3ddbfb8d71bd483e8efb1a5ea4993015 schema:familyName Yin
51 schema:givenName Hujun
52 rdf:type schema:Person
53 N5fc81618be544646ac191b115263254b schema:name readcube_id
54 schema:value 7def1df9ea2144ed9fdfb3ee960ad2f3551404576d2c826b55e087605f8a9dc6
55 rdf:type schema:PropertyValue
56 N621893805d704db4854bc91cd3699a2f rdf:first sg:person.015655732472.57
57 rdf:rest Nf55dabf07df14336a73241c142648ef8
58 N63eecf84734248e1a016645c40beac67 rdf:first sg:person.012345130667.82
59 rdf:rest N621893805d704db4854bc91cd3699a2f
60 N862bbfdd3c6e4da4be99875214e63a9f schema:isbn 978-3-642-04393-2
61 978-3-642-04394-9
62 schema:name Intelligent Data Engineering and Automated Learning - IDEAL 2009
63 rdf:type schema:Book
64 N92057b0234184ad4ac4224206616f9f1 rdf:first N3ddbfb8d71bd483e8efb1a5ea4993015
65 rdf:rest rdf:nil
66 Nc097e3ff6e244908b8aa95f483ef811a schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nc7e417d3921e423aa234d454a9ca89d1 rdf:first N00f7f7bf9e304a97929146cbf81d9d76
69 rdf:rest N92057b0234184ad4ac4224206616f9f1
70 Ncd4048f7f2db410590e133246b4fbb22 schema:location Berlin, Heidelberg
71 schema:name Springer Berlin Heidelberg
72 rdf:type schema:Organisation
73 Nce3b1d77c34342c6b80715e240f491e3 schema:name doi
74 schema:value 10.1007/978-3-642-04394-9_95
75 rdf:type schema:PropertyValue
76 Ndd232a75f319460e97d4de2646d730bf rdf:first sg:person.01104425666.00
77 rdf:rest rdf:nil
78 Nde9127028eb64afda679da3aec63df4c rdf:first sg:person.016056436767.91
79 rdf:rest Ndd232a75f319460e97d4de2646d730bf
80 Nf55dabf07df14336a73241c142648ef8 rdf:first sg:person.014244552651.42
81 rdf:rest Nde9127028eb64afda679da3aec63df4c
82 anzsrc-for:12 schema:inDefinedTermSet anzsrc-for:
83 schema:name Built Environment and Design
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Building
87 rdf:type schema:DefinedTerm
88 sg:person.01104425666.00 schema:affiliation https://www.grid.ac/institutes/grid.23520.36
89 schema:familyName Corchado
90 schema:givenName Emilio
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104425666.00
92 rdf:type schema:Person
93 sg:person.012345130667.82 schema:affiliation https://www.grid.ac/institutes/grid.23520.36
94 schema:familyName Sedano
95 schema:givenName Javier
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82
97 rdf:type schema:Person
98 sg:person.014244552651.42 schema:affiliation https://www.grid.ac/institutes/grid.23520.36
99 schema:familyName Curiel
100 schema:givenName Leticia
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244552651.42
102 rdf:type schema:Person
103 sg:person.015655732472.57 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
104 schema:familyName Villar
105 schema:givenName José Ramón
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57
107 rdf:type schema:Person
108 sg:person.016056436767.91 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
109 schema:familyName de la Cal
110 schema:givenName Enrique
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91
112 rdf:type schema:Person
113 sg:pub.10.1007/978-1-4471-0453-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704911
114 https://doi.org/10.1007/978-1-4471-0453-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-1-4471-2097-1_189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041206447
117 https://doi.org/10.1007/978-1-4471-2097-1_189
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-87656-4_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038785057
120 https://doi.org/10.1007/978-3-540-87656-4_72
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/b:dami.0000023673.23078.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052292137
123 https://doi.org/10.1023/b:dami.0000023673.23078.a3
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1109704911 schema:CreativeWork
126 https://doi.org/10.1016/0360-1323(90)90035-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1013063728
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.apenergy.2009.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050219575
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.applthermaleng.2008.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010896434
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1037/h0071325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033321863
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/09528130310001611603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018917874
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/t-c.1974.224051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061456026
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tkde.2005.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661468
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1115/1.2899207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062091666
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1142/s0218001403002915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949392
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/aos/1176346703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408203
147 rdf:type schema:CreativeWork
148 https://doi.org/10.3233/ica-2009-0302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810305
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
151 schema:name Department of Computer Science, University of Oviedo, Spain
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.23520.36 schema:alternateName University of Burgos
154 schema:name Department of Civil Engineering, University of Burgos, Burgos, Spain
155 Department of Electromechanical Engineering, University of Burgos, Burgos, Spain
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...