Novel Architecture for RNA Secondary Structure Prediction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Mario A. García-Martínez , Rubén Posada-Gómez , Giner Alor-Hernández

ABSTRACT

RNA secondary structure prediction, well-known like “RNA-problem”, is an operation of high demand of computational resources. At present, several techniques of parallel computing are used in order to obtain efficient results to solve this problem. In this work we present the FPGA implementation of a novel and modular architecture for solution of RNA-problem. The circuit computes the minimum energy that corresponds to optimal secondary structure searched for. A parallel and pipeline design is obtained giving an O(n 2 ) time complexity solution, in counterpart with the classic O(n 3) algorithm for software implementations. We have used Xilinx FPGAs for implementations, and the packages ISE8.1i and ModelSim 6.1e respectively to make VHDL description and circuit verification. More... »

PAGES

416-423

Book

TITLE

Intelligent Data Engineering and Automated Learning - IDEAL 2009

ISBN

978-3-642-04393-2
978-3-642-04394-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_51

DOI

http://dx.doi.org/10.1007/978-3-642-04394-9_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051022250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Tecnologico de Orizaba", 
          "id": "https://www.grid.ac/institutes/grid.466840.8", 
          "name": [
            "Instituto Tecnol\u00f3gico de Orizaba, DEPI, Orizaba Ver., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Mart\u00ednez", 
        "givenName": "Mario A.", 
        "id": "sg:person.014737721713.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737721713.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Tecnologico de Orizaba", 
          "id": "https://www.grid.ac/institutes/grid.466840.8", 
          "name": [
            "Instituto Tecnol\u00f3gico de Orizaba, DEPI, Orizaba Ver., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Posada-G\u00f3mez", 
        "givenName": "Rub\u00e9n", 
        "id": "sg:person.013051244145.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013051244145.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Tecnologico de Orizaba", 
          "id": "https://www.grid.ac/institutes/grid.466840.8", 
          "name": [
            "Instituto Tecnol\u00f3gico de Orizaba, DEPI, Orizaba Ver., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alor-Hern\u00e1ndez", 
        "givenName": "Giner", 
        "id": "sg:person.011654422251.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654422251.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/9.1.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004222010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.77.11.6309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008891679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asap.2008.4580177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093701089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipdps.2006.1639541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094367141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dsd.2009.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094652974"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "RNA secondary structure prediction, well-known like \u201cRNA-problem\u201d, is an operation of high demand of computational resources. At present, several techniques of parallel computing are used in order to obtain efficient results to solve this problem. In this work we present the FPGA implementation of a novel and modular architecture for solution of RNA-problem. The circuit computes the minimum energy that corresponds to optimal secondary structure searched for. A parallel and pipeline design is obtained giving an O(n 2 ) time complexity solution, in counterpart with the classic O(n 3) algorithm for software implementations. We have used Xilinx FPGAs for implementations, and the packages ISE8.1i and ModelSim 6.1e respectively to make VHDL description and circuit verification.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04394-9_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04393-2", 
        "978-3-642-04394-9"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning - IDEAL 2009", 
      "type": "Book"
    }, 
    "name": "Novel Architecture for RNA Secondary Structure Prediction", 
    "pagination": "416-423", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04394-9_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f30d4b3b60e8d43dda8fee1541a3d087bdf757429729d2d21d463e2f6db12b97"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051022250"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04394-9_51", 
      "https://app.dimensions.ai/details/publication/pub.1051022250"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04394-9_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_51'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04394-9_51 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N0ec5d4807f584611b6bc14968a7b8c3e
4 schema:citation https://doi.org/10.1073/pnas.77.11.6309
5 https://doi.org/10.1093/nar/9.1.133
6 https://doi.org/10.1109/asap.2008.4580177
7 https://doi.org/10.1109/dsd.2009.225
8 https://doi.org/10.1109/ipdps.2006.1639541
9 schema:datePublished 2009
10 schema:datePublishedReg 2009-01-01
11 schema:description RNA secondary structure prediction, well-known like “RNA-problem”, is an operation of high demand of computational resources. At present, several techniques of parallel computing are used in order to obtain efficient results to solve this problem. In this work we present the FPGA implementation of a novel and modular architecture for solution of RNA-problem. The circuit computes the minimum energy that corresponds to optimal secondary structure searched for. A parallel and pipeline design is obtained giving an O(n 2 ) time complexity solution, in counterpart with the classic O(n 3) algorithm for software implementations. We have used Xilinx FPGAs for implementations, and the packages ISE8.1i and ModelSim 6.1e respectively to make VHDL description and circuit verification.
12 schema:editor N316c6bf206334dbab318c2cec4603ea8
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nd4510e800e354b10bb8e1c1d7e92440b
17 schema:name Novel Architecture for RNA Secondary Structure Prediction
18 schema:pagination 416-423
19 schema:productId N1a55f6ebfeb74033b2326eea0a5fc037
20 N3332119fc8074bb7ba7045965aae1824
21 Nd6d89819dfcc4d5781d8d9e914e19d9c
22 schema:publisher N410c7c9945714a45a7d4f0c9d4b4e85f
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051022250
24 https://doi.org/10.1007/978-3-642-04394-9_51
25 schema:sdDatePublished 2019-04-15T21:05
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N6c87914d0ebd4dffbbd4a6584a0dfbac
28 schema:url http://link.springer.com/10.1007/978-3-642-04394-9_51
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0ec5d4807f584611b6bc14968a7b8c3e rdf:first sg:person.014737721713.34
33 rdf:rest N9545ca4b12c14025aa59bae44892c9b7
34 N1a55f6ebfeb74033b2326eea0a5fc037 schema:name readcube_id
35 schema:value f30d4b3b60e8d43dda8fee1541a3d087bdf757429729d2d21d463e2f6db12b97
36 rdf:type schema:PropertyValue
37 N247650e9514441e7bfa390e2a0192cc1 rdf:first sg:person.011654422251.97
38 rdf:rest rdf:nil
39 N316c6bf206334dbab318c2cec4603ea8 rdf:first Ne60eef919c184914961c2633d1b5b98b
40 rdf:rest Nabe81fd586564f3e9b6cf9065c1433dd
41 N3332119fc8074bb7ba7045965aae1824 schema:name dimensions_id
42 schema:value pub.1051022250
43 rdf:type schema:PropertyValue
44 N410c7c9945714a45a7d4f0c9d4b4e85f schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N45ca811949d348cd9f96915f6d591971 schema:familyName Yin
48 schema:givenName Hujun
49 rdf:type schema:Person
50 N6c87914d0ebd4dffbbd4a6584a0dfbac schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N9545ca4b12c14025aa59bae44892c9b7 rdf:first sg:person.013051244145.99
53 rdf:rest N247650e9514441e7bfa390e2a0192cc1
54 Nabe81fd586564f3e9b6cf9065c1433dd rdf:first N45ca811949d348cd9f96915f6d591971
55 rdf:rest rdf:nil
56 Nd4510e800e354b10bb8e1c1d7e92440b schema:isbn 978-3-642-04393-2
57 978-3-642-04394-9
58 schema:name Intelligent Data Engineering and Automated Learning - IDEAL 2009
59 rdf:type schema:Book
60 Nd6d89819dfcc4d5781d8d9e914e19d9c schema:name doi
61 schema:value 10.1007/978-3-642-04394-9_51
62 rdf:type schema:PropertyValue
63 Ne60eef919c184914961c2633d1b5b98b schema:familyName Corchado
64 schema:givenName Emilio
65 rdf:type schema:Person
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
70 schema:name Computation Theory and Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.011654422251.97 schema:affiliation https://www.grid.ac/institutes/grid.466840.8
73 schema:familyName Alor-Hernández
74 schema:givenName Giner
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011654422251.97
76 rdf:type schema:Person
77 sg:person.013051244145.99 schema:affiliation https://www.grid.ac/institutes/grid.466840.8
78 schema:familyName Posada-Gómez
79 schema:givenName Rubén
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013051244145.99
81 rdf:type schema:Person
82 sg:person.014737721713.34 schema:affiliation https://www.grid.ac/institutes/grid.466840.8
83 schema:familyName García-Martínez
84 schema:givenName Mario A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737721713.34
86 rdf:type schema:Person
87 https://doi.org/10.1073/pnas.77.11.6309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008891679
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1093/nar/9.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004222010
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/asap.2008.4580177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093701089
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/dsd.2009.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094652974
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/ipdps.2006.1639541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094367141
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.466840.8 schema:alternateName Instituto Tecnologico de Orizaba
98 schema:name Instituto Tecnológico de Orizaba, DEPI, Orizaba Ver., México
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...