Intrusion Detection in Sensor Networks Using Clustering and Immune Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Zorana Banković , José M. Moya , Álvaro Araujo , Juan-Mariano de Goyeneche

ABSTRACT

Security of sensor networks is a complicated task, mostly due to the limited resources of sensor units. Encryption and authentication are useless if an attacker has entered the system. Thus, a second line of defense known as Intrusion Detection must be added in order to detect and eliminate attacks. In the recent past, various solutions for detecting intrusions have been proposed. Most of them are able to detect only a limited number of attacks. The solutions that deploy machine learning techniques exhibit higher level of flexibility and adaptability. Yet, these techniques consume significant power and computational resources. In this work we propose to implement unsupervised algorithms (genetic algorithm and self-organized maps) for detecting intrusions using the energy-efficient SORU architecture. Separate detectors are further organized in a distributed system using the idea of immune system organization. Our solution offers many benefits: ability to detect unknown attacks, high adaptability and energy efficiency. First testing results obtained in real environment demonstrate its high potential. More... »

PAGES

408-415

References to SciGraph publications

Book

TITLE

Intelligent Data Engineering and Automated Learning - IDEAL 2009

ISBN

978-3-642-04393-2
978-3-642-04394-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_50

DOI

http://dx.doi.org/10.1007/978-3-642-04394-9_50

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005419304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, UPM, Ciudad Universitaria sn, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bankovi\u0107", 
        "givenName": "Zorana", 
        "id": "sg:person.013534273534.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, UPM, Ciudad Universitaria sn, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, UPM, Ciudad Universitaria sn, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araujo", 
        "givenName": "\u00c1lvaro", 
        "id": "sg:person.010120552111.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120552111.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "ETSI Telecomunicaci\u00f3n, UPM, Ciudad Universitaria sn, 28040\u00a0Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Goyeneche", 
        "givenName": "Juan-Mariano", 
        "id": "sg:person.01132363131.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132363131.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1362542.1362546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000706298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-008-0132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004318936", 
          "https://doi.org/10.1007/s10489-008-0132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(97)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005216996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1029102.1029116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026677000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/990680.990707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033631965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1460877.1460903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037108305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/984622.984660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037615875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1080793.1080809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040321558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1029102.1029115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044777468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccnc.2006.1593102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093630889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sutc.2008.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094098637"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Security of sensor networks is a complicated task, mostly due to the limited resources of sensor units. Encryption and authentication are useless if an attacker has entered the system. Thus, a second line of defense known as Intrusion Detection must be added in order to detect and eliminate attacks. In the recent past, various solutions for detecting intrusions have been proposed. Most of them are able to detect only a limited number of attacks. The solutions that deploy machine learning techniques exhibit higher level of flexibility and adaptability. Yet, these techniques consume significant power and computational resources. In this work we propose to implement unsupervised algorithms (genetic algorithm and self-organized maps) for detecting intrusions using the energy-efficient SORU architecture. Separate detectors are further organized in a distributed system using the idea of immune system organization. Our solution offers many benefits: ability to detect unknown attacks, high adaptability and energy efficiency. First testing results obtained in real environment demonstrate its high potential.", 
    "editor": [
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04394-9_50", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04393-2", 
        "978-3-642-04394-9"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning - IDEAL 2009", 
      "type": "Book"
    }, 
    "name": "Intrusion Detection in Sensor Networks Using Clustering and Immune Systems", 
    "pagination": "408-415", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04394-9_50"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19d2288afcd52f83c7e60e5ae0d11d078d3c497f3e2e706cbca25613cc2235b6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005419304"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04394-9_50", 
      "https://app.dimensions.ai/details/publication/pub.1005419304"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04394-9_50"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_50'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_50'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_50'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04394-9_50'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04394-9_50 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8ef465cf7df14d22b28cf0142d426f6b
4 schema:citation sg:pub.10.1007/s10489-008-0132-0
5 https://doi.org/10.1016/s0925-2312(97)00068-4
6 https://doi.org/10.1109/ccnc.2006.1593102
7 https://doi.org/10.1109/sutc.2008.39
8 https://doi.org/10.1145/1029102.1029115
9 https://doi.org/10.1145/1029102.1029116
10 https://doi.org/10.1145/1080793.1080809
11 https://doi.org/10.1145/1362542.1362546
12 https://doi.org/10.1145/1460877.1460903
13 https://doi.org/10.1145/984622.984660
14 https://doi.org/10.1145/990680.990707
15 schema:datePublished 2009
16 schema:datePublishedReg 2009-01-01
17 schema:description Security of sensor networks is a complicated task, mostly due to the limited resources of sensor units. Encryption and authentication are useless if an attacker has entered the system. Thus, a second line of defense known as Intrusion Detection must be added in order to detect and eliminate attacks. In the recent past, various solutions for detecting intrusions have been proposed. Most of them are able to detect only a limited number of attacks. The solutions that deploy machine learning techniques exhibit higher level of flexibility and adaptability. Yet, these techniques consume significant power and computational resources. In this work we propose to implement unsupervised algorithms (genetic algorithm and self-organized maps) for detecting intrusions using the energy-efficient SORU architecture. Separate detectors are further organized in a distributed system using the idea of immune system organization. Our solution offers many benefits: ability to detect unknown attacks, high adaptability and energy efficiency. First testing results obtained in real environment demonstrate its high potential.
18 schema:editor N919b6929061541759ba9b058aa7a7129
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N1c36e0f0b75c4775929c7b68a1b8e592
23 schema:name Intrusion Detection in Sensor Networks Using Clustering and Immune Systems
24 schema:pagination 408-415
25 schema:productId N84021445657f4043845d58d2f7e06061
26 N92726c9b00304794850a096ff02ee46c
27 Nb28db7102af840ef9fea5a2b33e538e6
28 schema:publisher N84e0b35ae38a43219087d9c6de34da5d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005419304
30 https://doi.org/10.1007/978-3-642-04394-9_50
31 schema:sdDatePublished 2019-04-15T23:49
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ne647aab4bab84023a62e8b6bd5d5c922
34 schema:url http://link.springer.com/10.1007/978-3-642-04394-9_50
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N18bd168af27d41048ac7bf937b7228e2 schema:familyName Yin
39 schema:givenName Hujun
40 rdf:type schema:Person
41 N1c36e0f0b75c4775929c7b68a1b8e592 schema:isbn 978-3-642-04393-2
42 978-3-642-04394-9
43 schema:name Intelligent Data Engineering and Automated Learning - IDEAL 2009
44 rdf:type schema:Book
45 N2cf02e68a68a42c39617673a9ebb4eeb rdf:first sg:person.010120552111.77
46 rdf:rest N5e89322e0b4c436bb13cde816cc61403
47 N51f85572c93f47d5a5b6e3d799258255 rdf:first N18bd168af27d41048ac7bf937b7228e2
48 rdf:rest rdf:nil
49 N5e89322e0b4c436bb13cde816cc61403 rdf:first sg:person.01132363131.83
50 rdf:rest rdf:nil
51 N7f5092e4c6eb4bb8a8de66e73e4c9834 rdf:first sg:person.07662217004.56
52 rdf:rest N2cf02e68a68a42c39617673a9ebb4eeb
53 N81dc056cfc3944eeb703e3c1dfb146b4 schema:familyName Corchado
54 schema:givenName Emilio
55 rdf:type schema:Person
56 N84021445657f4043845d58d2f7e06061 schema:name dimensions_id
57 schema:value pub.1005419304
58 rdf:type schema:PropertyValue
59 N84e0b35ae38a43219087d9c6de34da5d schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 N8ef465cf7df14d22b28cf0142d426f6b rdf:first sg:person.013534273534.80
63 rdf:rest N7f5092e4c6eb4bb8a8de66e73e4c9834
64 N919b6929061541759ba9b058aa7a7129 rdf:first N81dc056cfc3944eeb703e3c1dfb146b4
65 rdf:rest N51f85572c93f47d5a5b6e3d799258255
66 N92726c9b00304794850a096ff02ee46c schema:name readcube_id
67 schema:value 19d2288afcd52f83c7e60e5ae0d11d078d3c497f3e2e706cbca25613cc2235b6
68 rdf:type schema:PropertyValue
69 Nb28db7102af840ef9fea5a2b33e538e6 schema:name doi
70 schema:value 10.1007/978-3-642-04394-9_50
71 rdf:type schema:PropertyValue
72 Ne647aab4bab84023a62e8b6bd5d5c922 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:person.010120552111.77 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
81 schema:familyName Araujo
82 schema:givenName Álvaro
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120552111.77
84 rdf:type schema:Person
85 sg:person.01132363131.83 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
86 schema:familyName de Goyeneche
87 schema:givenName Juan-Mariano
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132363131.83
89 rdf:type schema:Person
90 sg:person.013534273534.80 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
91 schema:familyName Banković
92 schema:givenName Zorana
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534273534.80
94 rdf:type schema:Person
95 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
96 schema:familyName Moya
97 schema:givenName José M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
99 rdf:type schema:Person
100 sg:pub.10.1007/s10489-008-0132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004318936
101 https://doi.org/10.1007/s10489-008-0132-0
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0925-2312(97)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005216996
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/ccnc.2006.1593102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093630889
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/sutc.2008.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094098637
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/1029102.1029115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044777468
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1145/1029102.1029116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026677000
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1080793.1080809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040321558
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1362542.1362546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000706298
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/1460877.1460903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037108305
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/984622.984660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037615875
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/990680.990707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033631965
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
124 schema:name ETSI Telecomunicación, UPM, Ciudad Universitaria sn, 28040 Madrid, Spain
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...