Ontology type: schema:Chapter Open Access: True
2009
AUTHORSMarta Kwiatkowska , Gethin Norman , David Parker
ABSTRACTProbabilistic timed automata (PTAs) are used for formal modelling and verification of systems with probabilistic, nondeterministic and real-time behaviour. For non-probabilistic timed automata, forwards reachability is the analysis method of choice, since it can be implemented extremely efficiently. However, for PTAs, such techniques are only able to compute upper bounds on maximum reachability probabilities. In this paper, we propose a new approach to the analysis of PTAs using abstraction and stochastic games. We show how efficient forwards reachability techniques can be extended to yield both lower and upper bounds on maximum (and minimum) reachability probabilities. We also present abstraction-refinement techniques that are guaranteed to improve the precision of these probability bounds, providing a fully automatic method for computing the exact values. We have implemented these techniques and applied them to a set of large case studies. We show that, in comparison to alternative approaches to verifying PTAs, such as backwards reachability and digital clocks, our techniques exhibit superior performance and scalability. More... »
PAGES212-227
Formal Modeling and Analysis of Timed Systems
ISBN
978-3-642-04367-3
978-3-642-04368-0
http://scigraph.springernature.com/pub.10.1007/978-3-642-04368-0_17
DOIhttp://dx.doi.org/10.1007/978-3-642-04368-0_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027948650
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford"
],
"type": "Organization"
},
"familyName": "Kwiatkowska",
"givenName": "Marta",
"id": "sg:person.011375012273.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford"
],
"type": "Organization"
},
"familyName": "Norman",
"givenName": "Gethin",
"id": "sg:person.016323171577.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323171577.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford"
],
"type": "Organization"
},
"familyName": "Parker",
"givenName": "David",
"id": "sg:person.014007552600.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007552600.37"
],
"type": "Person"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "Probabilistic timed automata (PTAs) are used for formal modelling and verification of systems with probabilistic, nondeterministic and real-time behaviour. For non-probabilistic timed automata, forwards reachability is the analysis method of choice, since it can be implemented extremely efficiently. However, for PTAs, such techniques are only able to compute upper bounds on maximum reachability probabilities. In this paper, we propose a new approach to the analysis of PTAs using abstraction and stochastic games. We show how efficient forwards reachability techniques can be extended to yield both lower and upper bounds on maximum (and minimum) reachability probabilities. We also present abstraction-refinement techniques that are guaranteed to improve the precision of these probability bounds, providing a fully automatic method for computing the exact values. We have implemented these techniques and applied them to a set of large case studies. We show that, in comparison to alternative approaches to verifying PTAs, such as backwards reachability and digital clocks, our techniques exhibit superior performance and scalability.",
"editor": [
{
"familyName": "Ouaknine",
"givenName": "Jo\u00ebl",
"type": "Person"
},
{
"familyName": "Vaandrager",
"givenName": "Frits W.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-04368-0_17",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-04367-3",
"978-3-642-04368-0"
],
"name": "Formal Modeling and Analysis of Timed Systems",
"type": "Book"
},
"keywords": [
"abstraction refinement technique",
"verification of systems",
"real-time behavior",
"Probabilistic Timed Automata",
"reachability probabilities",
"stochastic games",
"formal modelling",
"large case study",
"Timed Automata",
"automatic method",
"reachability techniques",
"upper bounds",
"such techniques",
"superior performance",
"automata",
"reachability",
"verification",
"new approach",
"game",
"digital clock",
"probability bounds",
"scalability",
"case study",
"abstraction",
"bounds",
"technique",
"analysis method",
"alternative approach",
"set",
"performance",
"method",
"system",
"exact values",
"probability",
"precision",
"modelling",
"clock",
"choice",
"PTA",
"behavior",
"analysis",
"comparison",
"values",
"study",
"approach",
"paper"
],
"name": "Stochastic Games for Verification of Probabilistic Timed Automata",
"pagination": "212-227",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027948650"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-04368-0_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-04368-0_17",
"https://app.dimensions.ai/details/publication/pub.1027948650"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_337.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-04368-0_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04368-0_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04368-0_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04368-0_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04368-0_17'
This table displays all metadata directly associated to this object as RDF triples.
125 TRIPLES
23 PREDICATES
72 URIs
65 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-04368-0_17 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N2d10107e4fb54df1b94b4f27eaa5d1b1 |
4 | ″ | schema:datePublished | 2009 |
5 | ″ | schema:datePublishedReg | 2009-01-01 |
6 | ″ | schema:description | Probabilistic timed automata (PTAs) are used for formal modelling and verification of systems with probabilistic, nondeterministic and real-time behaviour. For non-probabilistic timed automata, forwards reachability is the analysis method of choice, since it can be implemented extremely efficiently. However, for PTAs, such techniques are only able to compute upper bounds on maximum reachability probabilities. In this paper, we propose a new approach to the analysis of PTAs using abstraction and stochastic games. We show how efficient forwards reachability techniques can be extended to yield both lower and upper bounds on maximum (and minimum) reachability probabilities. We also present abstraction-refinement techniques that are guaranteed to improve the precision of these probability bounds, providing a fully automatic method for computing the exact values. We have implemented these techniques and applied them to a set of large case studies. We show that, in comparison to alternative approaches to verifying PTAs, such as backwards reachability and digital clocks, our techniques exhibit superior performance and scalability. |
7 | ″ | schema:editor | Nca2a1aad65c445b7a8c5d1ab6af39d92 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N58c83b015f4047a7a61e86531158cfae |
12 | ″ | schema:keywords | PTA |
13 | ″ | ″ | Probabilistic Timed Automata |
14 | ″ | ″ | Timed Automata |
15 | ″ | ″ | abstraction |
16 | ″ | ″ | abstraction refinement technique |
17 | ″ | ″ | alternative approach |
18 | ″ | ″ | analysis |
19 | ″ | ″ | analysis method |
20 | ″ | ″ | approach |
21 | ″ | ″ | automata |
22 | ″ | ″ | automatic method |
23 | ″ | ″ | behavior |
24 | ″ | ″ | bounds |
25 | ″ | ″ | case study |
26 | ″ | ″ | choice |
27 | ″ | ″ | clock |
28 | ″ | ″ | comparison |
29 | ″ | ″ | digital clock |
30 | ″ | ″ | exact values |
31 | ″ | ″ | formal modelling |
32 | ″ | ″ | game |
33 | ″ | ″ | large case study |
34 | ″ | ″ | method |
35 | ″ | ″ | modelling |
36 | ″ | ″ | new approach |
37 | ″ | ″ | paper |
38 | ″ | ″ | performance |
39 | ″ | ″ | precision |
40 | ″ | ″ | probability |
41 | ″ | ″ | probability bounds |
42 | ″ | ″ | reachability |
43 | ″ | ″ | reachability probabilities |
44 | ″ | ″ | reachability techniques |
45 | ″ | ″ | real-time behavior |
46 | ″ | ″ | scalability |
47 | ″ | ″ | set |
48 | ″ | ″ | stochastic games |
49 | ″ | ″ | study |
50 | ″ | ″ | such techniques |
51 | ″ | ″ | superior performance |
52 | ″ | ″ | system |
53 | ″ | ″ | technique |
54 | ″ | ″ | upper bounds |
55 | ″ | ″ | values |
56 | ″ | ″ | verification |
57 | ″ | ″ | verification of systems |
58 | ″ | schema:name | Stochastic Games for Verification of Probabilistic Timed Automata |
59 | ″ | schema:pagination | 212-227 |
60 | ″ | schema:productId | N191aa39719a54bb7b8e135cea539bf79 |
61 | ″ | ″ | N8e1e82bb952b4fe09fe64af11c97b902 |
62 | ″ | schema:publisher | N312c923ea9f84a288828cf37257581f4 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027948650 |
64 | ″ | ″ | https://doi.org/10.1007/978-3-642-04368-0_17 |
65 | ″ | schema:sdDatePublished | 2022-05-10T10:48 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N509421d519354f4e89677df3a5e78803 |
68 | ″ | schema:url | https://doi.org/10.1007/978-3-642-04368-0_17 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | chapters |
71 | ″ | rdf:type | schema:Chapter |
72 | N191aa39719a54bb7b8e135cea539bf79 | schema:name | doi |
73 | ″ | schema:value | 10.1007/978-3-642-04368-0_17 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N2d10107e4fb54df1b94b4f27eaa5d1b1 | rdf:first | sg:person.011375012273.39 |
76 | ″ | rdf:rest | Nc038a38a57e84109aa8fc236de30aacd |
77 | N312c923ea9f84a288828cf37257581f4 | schema:name | Springer Nature |
78 | ″ | rdf:type | schema:Organisation |
79 | N509421d519354f4e89677df3a5e78803 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | N58c83b015f4047a7a61e86531158cfae | schema:isbn | 978-3-642-04367-3 |
82 | ″ | ″ | 978-3-642-04368-0 |
83 | ″ | schema:name | Formal Modeling and Analysis of Timed Systems |
84 | ″ | rdf:type | schema:Book |
85 | N8e1e82bb952b4fe09fe64af11c97b902 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1027948650 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N90c5880d2806411f8a090dd60e2c0fd1 | rdf:first | sg:person.014007552600.37 |
89 | ″ | rdf:rest | rdf:nil |
90 | Nbf240e93a0d34798beb5d90afceda5b1 | rdf:first | Ndbea168cf2e74236bf0e2d3f02900fd9 |
91 | ″ | rdf:rest | rdf:nil |
92 | Nc038a38a57e84109aa8fc236de30aacd | rdf:first | sg:person.016323171577.36 |
93 | ″ | rdf:rest | N90c5880d2806411f8a090dd60e2c0fd1 |
94 | Nca2a1aad65c445b7a8c5d1ab6af39d92 | rdf:first | Nd293eddceec24e659749200b1ab5a6aa |
95 | ″ | rdf:rest | Nbf240e93a0d34798beb5d90afceda5b1 |
96 | Nd293eddceec24e659749200b1ab5a6aa | schema:familyName | Ouaknine |
97 | ″ | schema:givenName | Joël |
98 | ″ | rdf:type | schema:Person |
99 | Ndbea168cf2e74236bf0e2d3f02900fd9 | schema:familyName | Vaandrager |
100 | ″ | schema:givenName | Frits W. |
101 | ″ | rdf:type | schema:Person |
102 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Information and Computing Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Artificial Intelligence and Image Processing |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.011375012273.39 | schema:affiliation | grid-institutes:grid.4991.5 |
109 | ″ | schema:familyName | Kwiatkowska |
110 | ″ | schema:givenName | Marta |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.014007552600.37 | schema:affiliation | grid-institutes:grid.4991.5 |
114 | ″ | schema:familyName | Parker |
115 | ″ | schema:givenName | David |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007552600.37 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.016323171577.36 | schema:affiliation | grid-institutes:grid.4991.5 |
119 | ″ | schema:familyName | Norman |
120 | ″ | schema:givenName | Gethin |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323171577.36 |
122 | ″ | rdf:type | schema:Person |
123 | grid-institutes:grid.4991.5 | schema:alternateName | Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford |
124 | ″ | schema:name | Computing Laboratory, Oxford University, Parks Road, OX1 3QD, Oxford |
125 | ″ | rdf:type | schema:Organization |