Calcium Responses Model in Striatum Dependent on Timed Input Sources View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Takashi Nakano , Junichiro Yoshimoto , Jeff Wickens , Kenji Doya

ABSTRACT

The striatum is the input nucleus of the basal ganglia and is thought to be involved in reinforcement learning. The striatum receives glutamate input from the cortex, which carries sensory information, and dopamine input from the substantia nigra, which carries reward information. Dopamine-dependent plasticity of cortico-striatal synapses is supposed to play a critical role in reinforcement learning. Recently, a number of labs reported contradictory results of its dependence on the timing of cortical inputs and spike output. To clarify the mechanisms behind spike timing-dependent plasticity of striatal synapses, we investigated spike timing-dependence of intracellular calcium concentration by constructing a striatal neuron model with realistic morphology. Our simulation predicted that the calcium transient will be maximal when cortical spike input and dopamine input precede the postsynaptic spike. The gain of the calcium transient is enhanced during the “up-state” of striatal cells and depends critically on NMDA receptor currents. More... »

PAGES

249-258

Book

TITLE

Artificial Neural Networks – ICANN 2009

ISBN

978-3-642-04273-7
978-3-642-04274-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04274-4_26

DOI

http://dx.doi.org/10.1007/978-3-642-04274-4_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019580085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nara Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.260493.a", 
          "name": [
            "Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara\u00a0630-0192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakano", 
        "givenName": "Takashi", 
        "id": "sg:person.01363007276.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363007276.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nara Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.260493.a", 
          "name": [
            "Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara\u00a0630-0192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimoto", 
        "givenName": "Junichiro", 
        "id": "sg:person.0637403176.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637403176.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "Initial Research Project, Okinawa Institute of Science and Technology, 12-22 Suzaki, Uruma, Okinawa\u00a0904-2234, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wickens", 
        "givenName": "Jeff", 
        "id": "sg:person.015012277424.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012277424.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nara Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.260493.a", 
          "name": [
            "Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara\u00a0630-0192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doya", 
        "givenName": "Kenji", 
        "id": "sg:person.0754025161.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754025161.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.4476-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001930931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4402-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002609910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(92)90003-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003385617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(92)90003-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003385617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0896-6273(95)90294-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004547257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012101888", 
          "https://doi.org/10.1038/nature02033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012101888", 
          "https://doi.org/10.1038/nature02033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.1997.tb01648.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013274150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107385840100700207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020857106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107385840100700207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020857106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(93)90081-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021872416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(93)90081-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021872416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023016264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-4388(99)80045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024940533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2220-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.23.9574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035148312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cellbio.16.1.521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038681011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00618.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041568378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4475-03.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042436972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2004.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045798511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(02)00045-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052749666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.16-07-02397.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082876239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The striatum is the input nucleus of the basal ganglia and is thought to be involved in reinforcement learning. The striatum receives glutamate input from the cortex, which carries sensory information, and dopamine input from the substantia nigra, which carries reward information. Dopamine-dependent plasticity of cortico-striatal synapses is supposed to play a critical role in reinforcement learning. Recently, a number of labs reported contradictory results of its dependence on the timing of cortical inputs and spike output. To clarify the mechanisms behind spike timing-dependent plasticity of striatal synapses, we investigated spike timing-dependence of intracellular calcium concentration by constructing a striatal neuron model with realistic morphology. Our simulation predicted that the calcium transient will be maximal when cortical spike input and dopamine input precede the postsynaptic spike. The gain of the calcium transient is enhanced during the \u201cup-state\u201d of striatal cells and depends critically on NMDA receptor currents.", 
    "editor": [
      {
        "familyName": "Alippi", 
        "givenName": "Cesare", 
        "type": "Person"
      }, 
      {
        "familyName": "Polycarpou", 
        "givenName": "Marios", 
        "type": "Person"
      }, 
      {
        "familyName": "Panayiotou", 
        "givenName": "Christos", 
        "type": "Person"
      }, 
      {
        "familyName": "Ellinas", 
        "givenName": "Georgios", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04274-4_26", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04273-7", 
        "978-3-642-04274-4"
      ], 
      "name": "Artificial Neural Networks \u2013 ICANN 2009", 
      "type": "Book"
    }, 
    "name": "Calcium Responses Model in Striatum Dependent on Timed Input Sources", 
    "pagination": "249-258", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04274-4_26"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d4acf9125ea4e9e095e5593eeba7c89ca32ef4ad55c3831bccb9e4216c3aa01"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019580085"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04274-4_26", 
      "https://app.dimensions.ai/details/publication/pub.1019580085"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000286.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04274-4_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04274-4_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04274-4_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04274-4_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04274-4_26'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04274-4_26 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ncff014b9a745400bb4807b604375deed
4 schema:citation sg:pub.10.1038/nature02033
5 https://doi.org/10.1016/0166-2236(92)90003-q
6 https://doi.org/10.1016/0166-2236(93)90081-v
7 https://doi.org/10.1016/0896-6273(95)90294-5
8 https://doi.org/10.1016/j.neuron.2004.10.013
9 https://doi.org/10.1016/s0893-6080(02)00045-x
10 https://doi.org/10.1016/s0959-4388(99)80045-2
11 https://doi.org/10.1073/pnas.86.23.9574
12 https://doi.org/10.1111/j.1460-9568.1997.tb01648.x
13 https://doi.org/10.1146/annurev.cellbio.16.1.521
14 https://doi.org/10.1152/jn.00618.2002
15 https://doi.org/10.1177/107385840100700207
16 https://doi.org/10.1371/journal.pcbi.1000670
17 https://doi.org/10.1523/jneurosci.16-07-02397.1996
18 https://doi.org/10.1523/jneurosci.2220-05.2005
19 https://doi.org/10.1523/jneurosci.4402-07.2008
20 https://doi.org/10.1523/jneurosci.4475-03.2004
21 https://doi.org/10.1523/jneurosci.4476-05.2005
22 schema:datePublished 2009
23 schema:datePublishedReg 2009-01-01
24 schema:description The striatum is the input nucleus of the basal ganglia and is thought to be involved in reinforcement learning. The striatum receives glutamate input from the cortex, which carries sensory information, and dopamine input from the substantia nigra, which carries reward information. Dopamine-dependent plasticity of cortico-striatal synapses is supposed to play a critical role in reinforcement learning. Recently, a number of labs reported contradictory results of its dependence on the timing of cortical inputs and spike output. To clarify the mechanisms behind spike timing-dependent plasticity of striatal synapses, we investigated spike timing-dependence of intracellular calcium concentration by constructing a striatal neuron model with realistic morphology. Our simulation predicted that the calcium transient will be maximal when cortical spike input and dopamine input precede the postsynaptic spike. The gain of the calcium transient is enhanced during the “up-state” of striatal cells and depends critically on NMDA receptor currents.
25 schema:editor Nb2e10d9d99c94e68b29c8267bc8d5e04
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N3217000686fb4bb79b0b51a94ccdc904
30 schema:name Calcium Responses Model in Striatum Dependent on Timed Input Sources
31 schema:pagination 249-258
32 schema:productId N0672ce0cb645451fb7f6afdb4bb83ecb
33 N23f60bed19a644b78353d5f08d8e5f5b
34 Nb685c44c553c4ad6a8eb24e572d3f286
35 schema:publisher N382ee1ef81f64fbca3055d5300be2d25
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019580085
37 https://doi.org/10.1007/978-3-642-04274-4_26
38 schema:sdDatePublished 2019-04-15T17:18
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nfd10d619d62442ac9ee85b5ffcb25e15
41 schema:url http://link.springer.com/10.1007/978-3-642-04274-4_26
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0672ce0cb645451fb7f6afdb4bb83ecb schema:name readcube_id
46 schema:value 5d4acf9125ea4e9e095e5593eeba7c89ca32ef4ad55c3831bccb9e4216c3aa01
47 rdf:type schema:PropertyValue
48 N22069f3811b1482db2e78ede1cb3b85a rdf:first N633cbad37d724c8baea4e4e499c63a0e
49 rdf:rest N731ea3aaa5ee440fb4023acda6d8c120
50 N23f60bed19a644b78353d5f08d8e5f5b schema:name dimensions_id
51 schema:value pub.1019580085
52 rdf:type schema:PropertyValue
53 N2f636847863943a49baa581ae2fe09b6 rdf:first sg:person.0754025161.35
54 rdf:rest rdf:nil
55 N3217000686fb4bb79b0b51a94ccdc904 schema:isbn 978-3-642-04273-7
56 978-3-642-04274-4
57 schema:name Artificial Neural Networks – ICANN 2009
58 rdf:type schema:Book
59 N382ee1ef81f64fbca3055d5300be2d25 schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 N633cbad37d724c8baea4e4e499c63a0e schema:familyName Panayiotou
63 schema:givenName Christos
64 rdf:type schema:Person
65 N68987f3250d9411983fb27912b843927 rdf:first Nd4839acb26e54543938853f7dad6e754
66 rdf:rest N22069f3811b1482db2e78ede1cb3b85a
67 N6aa12c038a444257a695ce18c98bf538 rdf:first sg:person.0637403176.05
68 rdf:rest Nc581e209d1b94f528eaada8f963dbc71
69 N6c6e97745c49439ba15178155638c812 schema:familyName Ellinas
70 schema:givenName Georgios
71 rdf:type schema:Person
72 N731ea3aaa5ee440fb4023acda6d8c120 rdf:first N6c6e97745c49439ba15178155638c812
73 rdf:rest rdf:nil
74 Na129033afd4b4ad48afc618cffe867f2 schema:familyName Alippi
75 schema:givenName Cesare
76 rdf:type schema:Person
77 Nb2e10d9d99c94e68b29c8267bc8d5e04 rdf:first Na129033afd4b4ad48afc618cffe867f2
78 rdf:rest N68987f3250d9411983fb27912b843927
79 Nb685c44c553c4ad6a8eb24e572d3f286 schema:name doi
80 schema:value 10.1007/978-3-642-04274-4_26
81 rdf:type schema:PropertyValue
82 Nc581e209d1b94f528eaada8f963dbc71 rdf:first sg:person.015012277424.14
83 rdf:rest N2f636847863943a49baa581ae2fe09b6
84 Ncff014b9a745400bb4807b604375deed rdf:first sg:person.01363007276.85
85 rdf:rest N6aa12c038a444257a695ce18c98bf538
86 Nd4839acb26e54543938853f7dad6e754 schema:familyName Polycarpou
87 schema:givenName Marios
88 rdf:type schema:Person
89 Nfd10d619d62442ac9ee85b5ffcb25e15 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical and Health Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
95 schema:name Neurosciences
96 rdf:type schema:DefinedTerm
97 sg:person.01363007276.85 schema:affiliation https://www.grid.ac/institutes/grid.260493.a
98 schema:familyName Nakano
99 schema:givenName Takashi
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363007276.85
101 rdf:type schema:Person
102 sg:person.015012277424.14 schema:affiliation https://www.grid.ac/institutes/grid.250464.1
103 schema:familyName Wickens
104 schema:givenName Jeff
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012277424.14
106 rdf:type schema:Person
107 sg:person.0637403176.05 schema:affiliation https://www.grid.ac/institutes/grid.260493.a
108 schema:familyName Yoshimoto
109 schema:givenName Junichiro
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637403176.05
111 rdf:type schema:Person
112 sg:person.0754025161.35 schema:affiliation https://www.grid.ac/institutes/grid.260493.a
113 schema:familyName Doya
114 schema:givenName Kenji
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754025161.35
116 rdf:type schema:Person
117 sg:pub.10.1038/nature02033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012101888
118 https://doi.org/10.1038/nature02033
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0166-2236(92)90003-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1003385617
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0166-2236(93)90081-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1021872416
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0896-6273(95)90294-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547257
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.neuron.2004.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045798511
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0893-6080(02)00045-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052749666
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0959-4388(99)80045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024940533
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.86.23.9574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035148312
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/j.1460-9568.1997.tb01648.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013274150
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1146/annurev.cellbio.16.1.521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038681011
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1152/jn.00618.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041568378
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1177/107385840100700207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020857106
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1371/journal.pcbi.1000670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023016264
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1523/jneurosci.16-07-02397.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082876239
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1523/jneurosci.2220-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625918
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1523/jneurosci.4402-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002609910
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1523/jneurosci.4475-03.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042436972
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1523/jneurosci.4476-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001930931
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.250464.1 schema:alternateName Okinawa Institute of Science and Technology
155 schema:name Initial Research Project, Okinawa Institute of Science and Technology, 12-22 Suzaki, Uruma, Okinawa 904-2234, Japan
156 rdf:type schema:Organization
157 https://www.grid.ac/institutes/grid.260493.a schema:alternateName Nara Institute of Science and Technology
158 schema:name Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...