Personalized Pulmonary Trunk Modeling for Intervention Planning and Valve Assessment Estimated from CT Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Dime Vitanovski , Razvan Ioan Ionasec , Bogdan Georgescu , Martin Huber , Andrew Mayall Taylor , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Pulmonary valve disease affects a significant portion of the global population and often occurs in conjunction with other heart dysfunctions. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. As minimal invasive procedures become common practice, imaging and non-invasive assessment techniques turn into key clinical tools. In this paper, we propose a novel approach for intervention planning as well as morphological and functional quantification of the pulmonary trunk and valve. An abstraction of the anatomic structures is represented through a four-dimensional, physiological model able to capture large pathological variation. A hierarchical estimation, based on robust learning methods, is applied to identify the patient-specific model parameters from volumetric CT scans. The algorithm involves detection of piecewise affine parameters, fast centre-line computation and local surface delineation. The estimated personalized model enables for efficient and precise quantification of function and morphology. This ability may have impact on the assessment and surgical interventions of the pulmonary valve and trunk. Experiments performed on 50 cardiac computer tomography sequences demonstrated the average speed of 202 seconds and accuracy of 2.2mm for the proposed approach. An initial clinical validation yielded a significant correlation between model-based and expert measurements. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from CT data. More... »

PAGES

17-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04268-3_3

DOI

http://dx.doi.org/10.1007/978-3-642-04268-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011317037

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20425966


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Valve Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Valve Prosthesis Implantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Preoperative Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Software and Engineering, Siemens Corporate Technology, Erlangen, Germany", 
            "Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan Ioan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Software and Engineering, Siemens Corporate Technology, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Software and Engineering, Siemens Corporate Technology, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huber", 
        "givenName": "Martin", 
        "id": "sg:person.0756423211.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756423211.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UCL Institute of Child Health & Great Ormond Street Hospital for Children, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "UCL Institute of Child Health & Great Ormond Street Hospital for Children, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Andrew Mayall", 
        "id": "sg:person.01120223741.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Pulmonary valve disease affects a significant portion of the global population and often occurs in conjunction with other heart dysfunctions. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. As minimal invasive procedures become common practice, imaging and non-invasive assessment techniques turn into key clinical tools. In this paper, we propose a novel approach for intervention planning as well as morphological and functional quantification of the pulmonary trunk and valve. An abstraction of the anatomic structures is represented through a four-dimensional, physiological model able to capture large pathological variation. A hierarchical estimation, based on robust learning methods, is applied to identify the patient-specific model parameters from volumetric CT scans. The algorithm involves detection of piecewise affine parameters, fast centre-line computation and local surface delineation. The estimated personalized model enables for efficient and precise quantification of function and morphology. This ability may have impact on the assessment and surgical interventions of the pulmonary valve and trunk. Experiments performed on 50 cardiac computer tomography sequences demonstrated the average speed of 202 seconds and accuracy of 2.2mm for the proposed approach. An initial clinical validation yielded a significant correlation between model-based and expert measurements. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from CT data.", 
    "editor": [
      {
        "familyName": "Yang", 
        "givenName": "Guang-Zhong", 
        "type": "Person"
      }, 
      {
        "familyName": "Hawkes", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Rueckert", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Noble", 
        "givenName": "Alison", 
        "type": "Person"
      }, 
      {
        "familyName": "Taylor", 
        "givenName": "Chris", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04268-3_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04267-6", 
        "978-3-642-04268-3"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2009", 
      "type": "Book"
    }, 
    "keywords": [
      "pulmonary trunk", 
      "percutaneous pulmonary valve implantation", 
      "pulmonary valve implantation", 
      "key clinical tool", 
      "non-invasive assessment techniques", 
      "minimal invasive procedure", 
      "initial clinical validation", 
      "intervention planning", 
      "valve implantation", 
      "surgical intervention", 
      "pulmonary valve", 
      "heart surgery", 
      "heart dysfunction", 
      "robust learning method", 
      "outflow track", 
      "invasive procedures", 
      "CT scan", 
      "interventional methods", 
      "valve assessment", 
      "clinical tool", 
      "volumetric CT scans", 
      "clinical validation", 
      "patient-specific model parameters", 
      "CT data", 
      "learning method", 
      "functional quantification", 
      "anatomic structures", 
      "significant correlation", 
      "hierarchical estimation", 
      "trunk", 
      "pathological variations", 
      "expert measurements", 
      "first dynamic model", 
      "tomography sequences", 
      "affine parameters", 
      "novel approach", 
      "surgery", 
      "dysfunction", 
      "model enables", 
      "disease", 
      "physiological model", 
      "model parameters", 
      "assessment", 
      "intervention", 
      "global population", 
      "scans", 
      "implantation", 
      "dynamic model", 
      "imaging", 
      "algorithm", 
      "abstraction", 
      "planning", 
      "computation", 
      "population", 
      "valve", 
      "average speed", 
      "assessment techniques", 
      "precise quantification", 
      "common practice", 
      "data", 
      "accuracy", 
      "significant portion", 
      "quantification", 
      "correlation", 
      "delineation", 
      "procedure", 
      "tool", 
      "parameters", 
      "enables", 
      "model", 
      "method", 
      "modeling", 
      "detection", 
      "practice", 
      "estimation", 
      "function", 
      "ability", 
      "speed", 
      "technique", 
      "track", 
      "portion", 
      "seconds", 
      "validation", 
      "knowledge", 
      "alternative", 
      "approach", 
      "impact", 
      "conjunction", 
      "experiments", 
      "sequence", 
      "measurements", 
      "structure", 
      "morphology", 
      "variation", 
      "paper"
    ], 
    "name": "Personalized Pulmonary Trunk Modeling for Intervention Planning and Valve Assessment Estimated from CT Data", 
    "pagination": "17-25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011317037"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04268-3_3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20425966"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04268-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1011317037"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_38.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-04268-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04268-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04268-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04268-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04268-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      23 PREDICATES      135 URIs      126 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04268-3_3 schema:about N1d77051d10ac4c56b31bc0cc485c16f1
2 N45dffb11c33245e7a3ca8876684051d0
3 N514ef292d02a494684ec5cdee54ea18c
4 N533f2ec365e941e4b169f758ef08dc25
5 N7108707d1625400fa509ed7970d00f1b
6 N750d9b02bea04fc0ba08997fad41a3e4
7 N78e95d6b295e4e2d99981d032b038a77
8 N8355f0f684874cc19ab5a64bdc588e24
9 N913b26bcfe6d46b8bfd7b8289c436fd8
10 Na287dd4e83024f819603639180c56560
11 Nfa3e5a9fccf849c5a20b73e324cffa31
12 anzsrc-for:08
13 anzsrc-for:0801
14 anzsrc-for:11
15 anzsrc-for:1102
16 schema:author Naef8a27c3b53487096ee9279f0123fea
17 schema:datePublished 2009
18 schema:datePublishedReg 2009-01-01
19 schema:description Pulmonary valve disease affects a significant portion of the global population and often occurs in conjunction with other heart dysfunctions. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. As minimal invasive procedures become common practice, imaging and non-invasive assessment techniques turn into key clinical tools. In this paper, we propose a novel approach for intervention planning as well as morphological and functional quantification of the pulmonary trunk and valve. An abstraction of the anatomic structures is represented through a four-dimensional, physiological model able to capture large pathological variation. A hierarchical estimation, based on robust learning methods, is applied to identify the patient-specific model parameters from volumetric CT scans. The algorithm involves detection of piecewise affine parameters, fast centre-line computation and local surface delineation. The estimated personalized model enables for efficient and precise quantification of function and morphology. This ability may have impact on the assessment and surgical interventions of the pulmonary valve and trunk. Experiments performed on 50 cardiac computer tomography sequences demonstrated the average speed of 202 seconds and accuracy of 2.2mm for the proposed approach. An initial clinical validation yielded a significant correlation between model-based and expert measurements. To the best of our knowledge this is the first dynamic model of the pulmonary trunk and right ventricle outflow track estimated from CT data.
20 schema:editor N120dc3c506a54bf9a1ed95e899a30909
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf Nec989d74b11e4103b3c2ba84b03b195b
25 schema:keywords CT data
26 CT scan
27 ability
28 abstraction
29 accuracy
30 affine parameters
31 algorithm
32 alternative
33 anatomic structures
34 approach
35 assessment
36 assessment techniques
37 average speed
38 clinical tool
39 clinical validation
40 common practice
41 computation
42 conjunction
43 correlation
44 data
45 delineation
46 detection
47 disease
48 dynamic model
49 dysfunction
50 enables
51 estimation
52 experiments
53 expert measurements
54 first dynamic model
55 function
56 functional quantification
57 global population
58 heart dysfunction
59 heart surgery
60 hierarchical estimation
61 imaging
62 impact
63 implantation
64 initial clinical validation
65 intervention
66 intervention planning
67 interventional methods
68 invasive procedures
69 key clinical tool
70 knowledge
71 learning method
72 measurements
73 method
74 minimal invasive procedure
75 model
76 model enables
77 model parameters
78 modeling
79 morphology
80 non-invasive assessment techniques
81 novel approach
82 outflow track
83 paper
84 parameters
85 pathological variations
86 patient-specific model parameters
87 percutaneous pulmonary valve implantation
88 physiological model
89 planning
90 population
91 portion
92 practice
93 precise quantification
94 procedure
95 pulmonary trunk
96 pulmonary valve
97 pulmonary valve implantation
98 quantification
99 robust learning method
100 scans
101 seconds
102 sequence
103 significant correlation
104 significant portion
105 speed
106 structure
107 surgery
108 surgical intervention
109 technique
110 tomography sequences
111 tool
112 track
113 trunk
114 validation
115 valve
116 valve assessment
117 valve implantation
118 variation
119 volumetric CT scans
120 schema:name Personalized Pulmonary Trunk Modeling for Intervention Planning and Valve Assessment Estimated from CT Data
121 schema:pagination 17-25
122 schema:productId N48de35d724d5465f8c0cf7031a0b71e9
123 N6b8ce08ab5e8480ca0d155f4fccd13c9
124 Na497e7afa6624ffda77ab435a6c206ba
125 schema:publisher N260b4fecc09f45fa961d3a2d4933b5f7
126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011317037
127 https://doi.org/10.1007/978-3-642-04268-3_3
128 schema:sdDatePublished 2022-05-20T07:47
129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
130 schema:sdPublisher Nf0e58d6aee8148ff8dd00d3b7b50170f
131 schema:url https://doi.org/10.1007/978-3-642-04268-3_3
132 sgo:license sg:explorer/license/
133 sgo:sdDataset chapters
134 rdf:type schema:Chapter
135 N035c962ab9e141ee9c2178cb5779f6ce rdf:first N1afdaacb2c3240d8afe79063150c354d
136 rdf:rest Na99f8cc2ce124729b707c7ac7313fce6
137 N047ecc16304f4a4eb46bc9a7088b8b65 schema:familyName Taylor
138 schema:givenName Chris
139 rdf:type schema:Person
140 N05ab10c6b8fc4950ac2fa111eaa27886 schema:familyName Yang
141 schema:givenName Guang-Zhong
142 rdf:type schema:Person
143 N120dc3c506a54bf9a1ed95e899a30909 rdf:first N05ab10c6b8fc4950ac2fa111eaa27886
144 rdf:rest N035c962ab9e141ee9c2178cb5779f6ce
145 N1840f055d0f34a5d80f48c20c13a55e3 schema:familyName Rueckert
146 schema:givenName Daniel
147 rdf:type schema:Person
148 N1afdaacb2c3240d8afe79063150c354d schema:familyName Hawkes
149 schema:givenName David
150 rdf:type schema:Person
151 N1d77051d10ac4c56b31bc0cc485c16f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Heart Valve Diseases
153 rdf:type schema:DefinedTerm
154 N20e454bd90224b90ba062c9159002892 rdf:first sg:person.0756423211.71
155 rdf:rest Nb3dc9df6c56745b2a7422a02c3947052
156 N260b4fecc09f45fa961d3a2d4933b5f7 schema:name Springer Nature
157 rdf:type schema:Organisation
158 N2ba5551e046645beb15bd80d70a9ea5c rdf:first sg:person.01010560470.38
159 rdf:rest N46ace6ff27d74853a2ea3c256448a949
160 N45dffb11c33245e7a3ca8876684051d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Radiographic Image Interpretation, Computer-Assisted
162 rdf:type schema:DefinedTerm
163 N46ace6ff27d74853a2ea3c256448a949 rdf:first sg:person.0703547214.37
164 rdf:rest N20e454bd90224b90ba062c9159002892
165 N48de35d724d5465f8c0cf7031a0b71e9 schema:name doi
166 schema:value 10.1007/978-3-642-04268-3_3
167 rdf:type schema:PropertyValue
168 N514ef292d02a494684ec5cdee54ea18c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Preoperative Care
170 rdf:type schema:DefinedTerm
171 N533f2ec365e941e4b169f758ef08dc25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Surgery, Computer-Assisted
173 rdf:type schema:DefinedTerm
174 N5aa9e056089a418eac4479cf501f507f schema:familyName Noble
175 schema:givenName Alison
176 rdf:type schema:Person
177 N5f359613580a4cd98c4f0a8f31846b49 rdf:first sg:person.01066111014.77
178 rdf:rest rdf:nil
179 N6b8ce08ab5e8480ca0d155f4fccd13c9 schema:name dimensions_id
180 schema:value pub.1011317037
181 rdf:type schema:PropertyValue
182 N7108707d1625400fa509ed7970d00f1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Tomography, X-Ray Computed
184 rdf:type schema:DefinedTerm
185 N750d9b02bea04fc0ba08997fad41a3e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Heart Valve Prosthesis Implantation
187 rdf:type schema:DefinedTerm
188 N78e95d6b295e4e2d99981d032b038a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Pulmonary Valve
190 rdf:type schema:DefinedTerm
191 N8355f0f684874cc19ab5a64bdc588e24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Models, Cardiovascular
193 rdf:type schema:DefinedTerm
194 N88c6e694701946c1abe14e769555e7a7 rdf:first sg:person.01322323610.92
195 rdf:rest N5f359613580a4cd98c4f0a8f31846b49
196 N8a6275b65180424d816d4f83b2620293 rdf:first N5aa9e056089a418eac4479cf501f507f
197 rdf:rest Nb2a9e393a0d848d79c6c8af525bffad9
198 N913b26bcfe6d46b8bfd7b8289c436fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Angiography
200 rdf:type schema:DefinedTerm
201 Na287dd4e83024f819603639180c56560 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Humans
203 rdf:type schema:DefinedTerm
204 Na497e7afa6624ffda77ab435a6c206ba schema:name pubmed_id
205 schema:value 20425966
206 rdf:type schema:PropertyValue
207 Na99f8cc2ce124729b707c7ac7313fce6 rdf:first N1840f055d0f34a5d80f48c20c13a55e3
208 rdf:rest N8a6275b65180424d816d4f83b2620293
209 Naef8a27c3b53487096ee9279f0123fea rdf:first sg:person.01242456111.33
210 rdf:rest N2ba5551e046645beb15bd80d70a9ea5c
211 Nb2a9e393a0d848d79c6c8af525bffad9 rdf:first N047ecc16304f4a4eb46bc9a7088b8b65
212 rdf:rest rdf:nil
213 Nb3dc9df6c56745b2a7422a02c3947052 rdf:first sg:person.01120223741.15
214 rdf:rest N88c6e694701946c1abe14e769555e7a7
215 Nec989d74b11e4103b3c2ba84b03b195b schema:isbn 978-3-642-04267-6
216 978-3-642-04268-3
217 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009
218 rdf:type schema:Book
219 Nf0e58d6aee8148ff8dd00d3b7b50170f schema:name Springer Nature - SN SciGraph project
220 rdf:type schema:Organization
221 Nfa3e5a9fccf849c5a20b73e324cffa31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Computer Simulation
223 rdf:type schema:DefinedTerm
224 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
225 schema:name Information and Computing Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
228 schema:name Artificial Intelligence and Image Processing
229 rdf:type schema:DefinedTerm
230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
231 schema:name Medical and Health Sciences
232 rdf:type schema:DefinedTerm
233 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
234 schema:name Cardiorespiratory Medicine and Haematology
235 rdf:type schema:DefinedTerm
236 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.6936.a
237 schema:familyName Ionasec
238 schema:givenName Razvan Ioan
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
240 rdf:type schema:Person
241 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
242 schema:familyName Comaniciu
243 schema:givenName Dorin
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
245 rdf:type schema:Person
246 sg:person.01120223741.15 schema:affiliation grid-institutes:None
247 schema:familyName Taylor
248 schema:givenName Andrew Mayall
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120223741.15
250 rdf:type schema:Person
251 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.5330.5
252 schema:familyName Vitanovski
253 schema:givenName Dime
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
255 rdf:type schema:Person
256 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
257 schema:familyName Hornegger
258 schema:givenName Joachim
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
260 rdf:type schema:Person
261 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
262 schema:familyName Georgescu
263 schema:givenName Bogdan
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
265 rdf:type schema:Person
266 sg:person.0756423211.71 schema:affiliation grid-institutes:grid.5406.7
267 schema:familyName Huber
268 schema:givenName Martin
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756423211.71
270 rdf:type schema:Person
271 grid-institutes:None schema:alternateName UCL Institute of Child Health & Great Ormond Street Hospital for Children, UK
272 schema:name UCL Institute of Child Health & Great Ormond Street Hospital for Children, UK
273 rdf:type schema:Organization
274 grid-institutes:grid.419233.e schema:alternateName Integrated Data Systems, Siemens Corporate Research, Princeton, USA
275 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
276 rdf:type schema:Organization
277 grid-institutes:grid.5330.5 schema:alternateName Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany
278 schema:name Chair of Pattern Recognition, Friedrich-Alexander-University, Erlangen, Germany
279 Software and Engineering, Siemens Corporate Technology, Erlangen, Germany
280 rdf:type schema:Organization
281 grid-institutes:grid.5406.7 schema:alternateName Software and Engineering, Siemens Corporate Technology, Erlangen, Germany
282 schema:name Software and Engineering, Siemens Corporate Technology, Erlangen, Germany
283 rdf:type schema:Organization
284 grid-institutes:grid.6936.a schema:alternateName Computer Aided Medical Procedures, Technical University Munich, Germany
285 schema:name Computer Aided Medical Procedures, Technical University Munich, Germany
286 Integrated Data Systems, Siemens Corporate Research, Princeton, USA
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...