Large-Scale Neighbor-Joining with NINJA View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Travis J. Wheeler

ABSTRACT

Neighbor-joining is a well-established hierarchical clustering algorithm for inferring phylogenies. It begins with observed distances between pairs of sequences, and clustering order depends on a metric related to those distances. The canonical algorithm requires O(n 3) time and O(n 2) space for n sequences, which precludes application to very large sequence families, e.g. those containing 100,000 sequences. Datasets of this size are available today, and such phylogenies will play an increasingly important role in comparative biology studies. Recent algorithmic advances have greatly sped up neighbor-joining for inputs of thousands of sequences, but are limited to fewer than 13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm that speeds up neighbor-joining by dramatically reducing the number of distance values that are viewed in each iteration of the clustering procedure, while still computing a correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000 sequences because of external-memory-efficient data structures. A free implementation may by obtained from http://nimbletwist.com/software/ninja More... »

PAGES

375-389

Book

TITLE

Algorithms in Bioinformatics

ISBN

978-3-642-04240-9
978-3-642-04241-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04241-6_31

DOI

http://dx.doi.org/10.1007/978-3-642-04241-6_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032768275


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Computer Science, The University of Arizona, Tucson, AZ\u00a085721, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wheeler", 
        "givenName": "Travis J.", 
        "id": "sg:person.01017523116.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017523116.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1098/rstb.2008.0182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000781911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0176-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002425643", 
          "https://doi.org/10.1007/s00239-005-0176-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0176-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002425643", 
          "https://doi.org/10.1007/s00239-005-0176-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004609029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020241015", 
          "https://doi.org/10.1007/978-3-540-79450-9_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-79450-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020241015", 
          "https://doi.org/10.1007/978-3-540-79450-9_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2008.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020352058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.11.1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024464903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028540883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028540883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48318-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028648790", 
          "https://doi.org/10.1007/3-540-48318-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48318-7_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028648790", 
          "https://doi.org/10.1007/3-540-48318-7_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00008277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030470236", 
          "https://doi.org/10.1007/pl00008277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032694395", 
          "https://doi.org/10.1007/bf00288683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032694395", 
          "https://doi.org/10.1007/bf00288683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035839794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041290832", 
          "https://doi.org/10.1186/1471-2105-7-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041290832", 
          "https://doi.org/10.1186/1471-2105-7-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043234723", 
          "https://doi.org/10.1186/1471-2148-9-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87361-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045155708", 
          "https://doi.org/10.1007/978-3-540-87361-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87361-7_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045155708", 
          "https://doi.org/10.1007/978-3-540-87361-7_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00357-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048251925", 
          "https://doi.org/10.1007/s00357-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1022594.1022596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048476351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052660302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652702761034136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079622097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812799623_0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096079230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Neighbor-joining is a well-established hierarchical clustering algorithm for inferring phylogenies. It begins with observed distances between pairs of sequences, and clustering order depends on a metric related to those distances. The canonical algorithm requires O(n 3) time and O(n 2) space for n sequences, which precludes application to very large sequence families, e.g. those containing 100,000 sequences. Datasets of this size are available today, and such phylogenies will play an increasingly important role in comparative biology studies. Recent algorithmic advances have greatly sped up neighbor-joining for inputs of thousands of sequences, but are limited to fewer than 13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm that speeds up neighbor-joining by dramatically reducing the number of distance values that are viewed in each iteration of the clustering procedure, while still computing a correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000 sequences because of external-memory-efficient data structures. A free implementation may by obtained from http://nimbletwist.com/software/ninja", 
    "editor": [
      {
        "familyName": "Salzberg", 
        "givenName": "Steven L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Warnow", 
        "givenName": "Tandy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04241-6_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04240-9", 
        "978-3-642-04241-6"
      ], 
      "name": "Algorithms in Bioinformatics", 
      "type": "Book"
    }, 
    "name": "Large-Scale Neighbor-Joining with NINJA", 
    "pagination": "375-389", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04241-6_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9c1a8328bd6757cbb8b76ad0ca70f8a991c7b61c63562a8e8d446db65a4ca7e7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032768275"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04241-6_31", 
      "https://app.dimensions.ai/details/publication/pub.1032768275"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000289.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04241-6_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04241-6_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04241-6_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04241-6_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04241-6_31'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04241-6_31 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N09db027cc46a4eb1b0fbca8966f9b512
4 schema:citation sg:pub.10.1007/3-540-48318-7_27
5 sg:pub.10.1007/978-3-540-79450-9_12
6 sg:pub.10.1007/978-3-540-87361-7_10
7 sg:pub.10.1007/bf00288683
8 sg:pub.10.1007/pl00008277
9 sg:pub.10.1007/s00239-005-0176-2
10 sg:pub.10.1007/s00357-005-0003-x
11 sg:pub.10.1186/1471-2105-7-29
12 sg:pub.10.1186/1471-2148-9-37
13 https://doi.org/10.1016/j.tcs.2008.12.040
14 https://doi.org/10.1089/106652702761034136
15 https://doi.org/10.1093/bioinformatics/18.11.1546
16 https://doi.org/10.1093/bioinformatics/bth359
17 https://doi.org/10.1093/bioinformatics/btl478
18 https://doi.org/10.1093/molbev/msp077
19 https://doi.org/10.1093/nar/gki081
20 https://doi.org/10.1093/nar/gkm960
21 https://doi.org/10.1093/oxfordjournals.molbev.a025808
22 https://doi.org/10.1093/oxfordjournals.molbev.a040454
23 https://doi.org/10.1093/oxfordjournals.molbev.a040527
24 https://doi.org/10.1098/rstb.2008.0182
25 https://doi.org/10.1142/9789812799623_0020
26 https://doi.org/10.1145/1022594.1022596
27 schema:datePublished 2009
28 schema:datePublishedReg 2009-01-01
29 schema:description Neighbor-joining is a well-established hierarchical clustering algorithm for inferring phylogenies. It begins with observed distances between pairs of sequences, and clustering order depends on a metric related to those distances. The canonical algorithm requires O(n 3) time and O(n 2) space for n sequences, which precludes application to very large sequence families, e.g. those containing 100,000 sequences. Datasets of this size are available today, and such phylogenies will play an increasingly important role in comparative biology studies. Recent algorithmic advances have greatly sped up neighbor-joining for inputs of thousands of sequences, but are limited to fewer than 13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm that speeds up neighbor-joining by dramatically reducing the number of distance values that are viewed in each iteration of the clustering procedure, while still computing a correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000 sequences because of external-memory-efficient data structures. A free implementation may by obtained from http://nimbletwist.com/software/ninja
30 schema:editor N8e734a2fea3347c493bb82846a594a5b
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N616c78a365214a57b2893e2ba0619913
35 schema:name Large-Scale Neighbor-Joining with NINJA
36 schema:pagination 375-389
37 schema:productId N36c348f8517d445894f7695116aa71f2
38 N4c32be7d65054ab988268bc8c7f0cd68
39 N64468e2836974b45ac0eb372139df00a
40 schema:publisher Ncbe99fbe5bac47c398ac63fbc4f26084
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032768275
42 https://doi.org/10.1007/978-3-642-04241-6_31
43 schema:sdDatePublished 2019-04-15T13:33
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N579ac9666f394e0aa9d22eddf519ccb8
46 schema:url http://link.springer.com/10.1007/978-3-642-04241-6_31
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N09db027cc46a4eb1b0fbca8966f9b512 rdf:first sg:person.01017523116.10
51 rdf:rest rdf:nil
52 N36c348f8517d445894f7695116aa71f2 schema:name doi
53 schema:value 10.1007/978-3-642-04241-6_31
54 rdf:type schema:PropertyValue
55 N3f9c0f66a5b64d6bb9e60596147ed992 rdf:first Nc01519aab6f245c481b900fb1ebe8fa3
56 rdf:rest rdf:nil
57 N4c32be7d65054ab988268bc8c7f0cd68 schema:name readcube_id
58 schema:value 9c1a8328bd6757cbb8b76ad0ca70f8a991c7b61c63562a8e8d446db65a4ca7e7
59 rdf:type schema:PropertyValue
60 N579ac9666f394e0aa9d22eddf519ccb8 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N616c78a365214a57b2893e2ba0619913 schema:isbn 978-3-642-04240-9
63 978-3-642-04241-6
64 schema:name Algorithms in Bioinformatics
65 rdf:type schema:Book
66 N64468e2836974b45ac0eb372139df00a schema:name dimensions_id
67 schema:value pub.1032768275
68 rdf:type schema:PropertyValue
69 N8e734a2fea3347c493bb82846a594a5b rdf:first Ncbb52848fedf449195896c4613ecba3e
70 rdf:rest N3f9c0f66a5b64d6bb9e60596147ed992
71 Nc01519aab6f245c481b900fb1ebe8fa3 schema:familyName Warnow
72 schema:givenName Tandy
73 rdf:type schema:Person
74 Ncbb52848fedf449195896c4613ecba3e schema:familyName Salzberg
75 schema:givenName Steven L.
76 rdf:type schema:Person
77 Ncbe99fbe5bac47c398ac63fbc4f26084 schema:location Berlin, Heidelberg
78 schema:name Springer Berlin Heidelberg
79 rdf:type schema:Organisation
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
84 schema:name Computation Theory and Mathematics
85 rdf:type schema:DefinedTerm
86 sg:person.01017523116.10 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
87 schema:familyName Wheeler
88 schema:givenName Travis J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017523116.10
90 rdf:type schema:Person
91 sg:pub.10.1007/3-540-48318-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028648790
92 https://doi.org/10.1007/3-540-48318-7_27
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-3-540-79450-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020241015
95 https://doi.org/10.1007/978-3-540-79450-9_12
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-540-87361-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045155708
98 https://doi.org/10.1007/978-3-540-87361-7_10
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf00288683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032694395
101 https://doi.org/10.1007/bf00288683
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/pl00008277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030470236
104 https://doi.org/10.1007/pl00008277
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00239-005-0176-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002425643
107 https://doi.org/10.1007/s00239-005-0176-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00357-005-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048251925
110 https://doi.org/10.1007/s00357-005-0003-x
111 rdf:type schema:CreativeWork
112 sg:pub.10.1186/1471-2105-7-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041290832
113 https://doi.org/10.1186/1471-2105-7-29
114 rdf:type schema:CreativeWork
115 sg:pub.10.1186/1471-2148-9-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043234723
116 https://doi.org/10.1186/1471-2148-9-37
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.tcs.2008.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020352058
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1089/106652702761034136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204960
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1093/bioinformatics/18.11.1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464903
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/bioinformatics/bth359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052660302
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/bioinformatics/btl478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004609029
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/molbev/msp077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540883
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1093/nar/gki081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286749
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/nar/gkm960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102057
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/oxfordjournals.molbev.a025808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035839794
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/oxfordjournals.molbev.a040527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079622097
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1098/rstb.2008.0182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000781911
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1142/9789812799623_0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096079230
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1022594.1022596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048476351
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
147 schema:name Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...