The Growing Semantic Web View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Mark Greaves

ABSTRACT

From its beginnings in 2004, the data available on the web in Semantic Web formats has typically been both eclectic and relatively small, and closely linked the interests of particular researchers. In the past year, however, the quantity and scope of data published on the public semantic web has exploded, and the size of the semantic web is now measured in the billions of assertions. It is a significant and growing resource for applications which depend on web-based resources for some or all of their knowledge. With this massive increase in quantity and scope come many opportunities, as well as the usual issues of scale on the web: inconsistency, mapping problems, incompleteness and data variability. This talk will cover the history and current state of the Semantic Web and the Linked Data Cloud, describe some of the uses to which web-based semantic data is currently put, and discuss prospects for the ECML/PKDD community to leverage this growing web of data. More... »

PAGES

3-3

Book

TITLE

Machine Learning and Knowledge Discovery in Databases

ISBN

978-3-642-04179-2
978-3-642-04180-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04180-8_3

DOI

http://dx.doi.org/10.1007/978-3-642-04180-8_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018792338


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vulcan (United States)", 
          "id": "https://www.grid.ac/institutes/grid.467617.5", 
          "name": [
            "Vulcan Inc., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greaves", 
        "givenName": "Mark", 
        "id": "sg:person.016207175477.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207175477.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "From its beginnings in 2004, the data available on the web in Semantic Web formats has typically been both eclectic and relatively small, and closely linked the interests of particular researchers. In the past year, however, the quantity and scope of data published on the public semantic web has exploded, and the size of the semantic web is now measured in the billions of assertions. It is a significant and growing resource for applications which depend on web-based resources for some or all of their knowledge. With this massive increase in quantity and scope come many opportunities, as well as the usual issues of scale on the web: inconsistency, mapping problems, incompleteness and data variability. This talk will cover the history and current state of the Semantic Web and the Linked Data Cloud, describe some of the uses to which web-based semantic data is currently put, and discuss prospects for the ECML/PKDD community to leverage this growing web of data.", 
    "editor": [
      {
        "familyName": "Buntine", 
        "givenName": "Wray", 
        "type": "Person"
      }, 
      {
        "familyName": "Grobelnik", 
        "givenName": "Marko", 
        "type": "Person"
      }, 
      {
        "familyName": "Mladeni\u0107", 
        "givenName": "Dunja", 
        "type": "Person"
      }, 
      {
        "familyName": "Shawe-Taylor", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04180-8_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04179-2", 
        "978-3-642-04180-8"
      ], 
      "name": "Machine Learning and Knowledge Discovery in Databases", 
      "type": "Book"
    }, 
    "name": "The Growing Semantic Web", 
    "pagination": "3-3", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04180-8_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "598a16445e4d4cc184bf1b58245131bd9218108af5edc3de7122d26f38ed4f75"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018792338"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04180-8_3", 
      "https://app.dimensions.ai/details/publication/pub.1018792338"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000032.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04180-8_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04180-8_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04180-8_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04180-8_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04180-8_3'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04180-8_3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N19bea91d983d42e88deb00d7e4fc886c
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description From its beginnings in 2004, the data available on the web in Semantic Web formats has typically been both eclectic and relatively small, and closely linked the interests of particular researchers. In the past year, however, the quantity and scope of data published on the public semantic web has exploded, and the size of the semantic web is now measured in the billions of assertions. It is a significant and growing resource for applications which depend on web-based resources for some or all of their knowledge. With this massive increase in quantity and scope come many opportunities, as well as the usual issues of scale on the web: inconsistency, mapping problems, incompleteness and data variability. This talk will cover the history and current state of the Semantic Web and the Linked Data Cloud, describe some of the uses to which web-based semantic data is currently put, and discuss prospects for the ECML/PKDD community to leverage this growing web of data.
7 schema:editor N8da405436d8a444ea35ce5273d2fe144
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N8c155df775c6450c956bb32517d74b89
12 schema:name The Growing Semantic Web
13 schema:pagination 3-3
14 schema:productId N311094aa179542098a9cd7bf996eb898
15 N38a1edb7d9a845d2a6ab39ee151e8f0a
16 Nc0b964e3292e4345a4466827b26084c9
17 schema:publisher N515b38dcbeb14fc6a7f7c4e29106e238
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018792338
19 https://doi.org/10.1007/978-3-642-04180-8_3
20 schema:sdDatePublished 2019-04-15T16:59
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7e80fea5bac447528532165e9001b9ca
23 schema:url http://link.springer.com/10.1007/978-3-642-04180-8_3
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N19bea91d983d42e88deb00d7e4fc886c rdf:first sg:person.016207175477.15
28 rdf:rest rdf:nil
29 N1e7232cf6bce454987572ece2deb942b rdf:first Ne9cf4f79452747c6b3f99ff15b3c9c7e
30 rdf:rest rdf:nil
31 N311094aa179542098a9cd7bf996eb898 schema:name readcube_id
32 schema:value 598a16445e4d4cc184bf1b58245131bd9218108af5edc3de7122d26f38ed4f75
33 rdf:type schema:PropertyValue
34 N38a1edb7d9a845d2a6ab39ee151e8f0a schema:name dimensions_id
35 schema:value pub.1018792338
36 rdf:type schema:PropertyValue
37 N515b38dcbeb14fc6a7f7c4e29106e238 schema:location Berlin, Heidelberg
38 schema:name Springer Berlin Heidelberg
39 rdf:type schema:Organisation
40 N7e80fea5bac447528532165e9001b9ca schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N803ab8b8c7654356ac1804ce00a4a0a4 schema:familyName Mladenić
43 schema:givenName Dunja
44 rdf:type schema:Person
45 N847a919622964bde94249a8643bb15e4 rdf:first N803ab8b8c7654356ac1804ce00a4a0a4
46 rdf:rest N1e7232cf6bce454987572ece2deb942b
47 N8c155df775c6450c956bb32517d74b89 schema:isbn 978-3-642-04179-2
48 978-3-642-04180-8
49 schema:name Machine Learning and Knowledge Discovery in Databases
50 rdf:type schema:Book
51 N8da405436d8a444ea35ce5273d2fe144 rdf:first Na5bddfe41bd14a2593c7270ce7666790
52 rdf:rest Nf89bd034b2ec4df98772ea3aeab2abeb
53 Na5bddfe41bd14a2593c7270ce7666790 schema:familyName Buntine
54 schema:givenName Wray
55 rdf:type schema:Person
56 Nc0b964e3292e4345a4466827b26084c9 schema:name doi
57 schema:value 10.1007/978-3-642-04180-8_3
58 rdf:type schema:PropertyValue
59 Ncfded0290bb84fb7a7b3da4160fe9c34 schema:familyName Grobelnik
60 schema:givenName Marko
61 rdf:type schema:Person
62 Ne9cf4f79452747c6b3f99ff15b3c9c7e schema:familyName Shawe-Taylor
63 schema:givenName John
64 rdf:type schema:Person
65 Nf89bd034b2ec4df98772ea3aeab2abeb rdf:first Ncfded0290bb84fb7a7b3da4160fe9c34
66 rdf:rest N847a919622964bde94249a8643bb15e4
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information Systems
72 rdf:type schema:DefinedTerm
73 sg:person.016207175477.15 schema:affiliation https://www.grid.ac/institutes/grid.467617.5
74 schema:familyName Greaves
75 schema:givenName Mark
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207175477.15
77 rdf:type schema:Person
78 https://www.grid.ac/institutes/grid.467617.5 schema:alternateName Vulcan (United States)
79 schema:name Vulcan Inc., USA
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...