Hybrid Solution of Two-Point Linear Boundary Value Problems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

M. Youssef , G. Baumann

ABSTRACT

We discuss a general approach to solve linear two points boundary value problems (BV) for ordinary differential equations of second and higher order. The combination of symbolic and numeric methods in a hybrid calculation allows us to derive solutions for boundary value problems in a symbolic and numeric representation. The combination of symbolic and numeric calculations simplifies not only the set up of iteration formulas which allow us to numerically represent the solution but also offers a way to standardize calculations and deliver a symbolic approximation of the solution. We use the properties of distributions and their approximations to set up interpolation formulas which are efficient and precise in the representation of solutions. In our examples we compare the exact results for our test examples with the numerical approximations to demonstrate that the solutions have an absolute error of about 10− 12. This order of accuracy is rarely reached by traditional numerical approaches, like sweep and shooting methods, but is within the limit of accuracy if we combine numerical methods with symbolic ones. More... »

PAGES

373-391

Book

TITLE

Computer Algebra in Scientific Computing

ISBN

978-3-642-04102-0
978-3-642-04103-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04103-7_31

DOI

http://dx.doi.org/10.1007/978-3-642-04103-7_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022364314


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German University in Cairo", 
          "id": "https://www.grid.ac/institutes/grid.187323.c", 
          "name": [
            "Mathematics Department, German University in Cairo, New Cairo City, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Youssef", 
        "givenName": "M.", 
        "id": "sg:person.011140724500.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011140724500.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German University in Cairo", 
          "id": "https://www.grid.ac/institutes/grid.187323.c", 
          "name": [
            "Mathematics Department, German University in Cairo, New Cairo City, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "G.", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-99-01102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002243633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(97)00163-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013332375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0096-3003(95)00099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017961290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2706-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081631", 
          "https://doi.org/10.1007/978-1-4612-2706-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2706-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081631", 
          "https://doi.org/10.1007/978-1-4612-2706-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-03-01587-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029365081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(90)90116-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032145225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(80)90857-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033972241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01564502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035672573", 
          "https://doi.org/10.1007/bf01564502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00348-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036760560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/26/16/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039926538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9274(97)00068-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041015654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-00-01226-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046232959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/11.3.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059688580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We discuss a general approach to solve linear two points boundary value problems (BV) for ordinary differential equations of second and higher order. The combination of symbolic and numeric methods in a hybrid calculation allows us to derive solutions for boundary value problems in a symbolic and numeric representation. The combination of symbolic and numeric calculations simplifies not only the set up of iteration formulas which allow us to numerically represent the solution but also offers a way to standardize calculations and deliver a symbolic approximation of the solution. We use the properties of distributions and their approximations to set up interpolation formulas which are efficient and precise in the representation of solutions. In our examples we compare the exact results for our test examples with the numerical approximations to demonstrate that the solutions have an absolute error of about 10\u2212\u200912. This order of accuracy is rarely reached by traditional numerical approaches, like sweep and shooting methods, but is within the limit of accuracy if we combine numerical methods with symbolic ones.", 
    "editor": [
      {
        "familyName": "Gerdt", 
        "givenName": "Vladimir P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mayr", 
        "givenName": "Ernst W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vorozhtsov", 
        "givenName": "Evgenii V.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04103-7_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04102-0", 
        "978-3-642-04103-7"
      ], 
      "name": "Computer Algebra in Scientific Computing", 
      "type": "Book"
    }, 
    "name": "Hybrid Solution of Two-Point Linear Boundary Value Problems", 
    "pagination": "373-391", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04103-7_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a8c4406a96abff1d358eafc8e49fad93ba73f8f1d7d5d282de8ed5e2b3b121d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022364314"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04103-7_31", 
      "https://app.dimensions.ai/details/publication/pub.1022364314"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000586.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04103-7_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04103-7_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04103-7_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04103-7_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04103-7_31'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04103-7_31 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf13bde2233a14e73a07d4cf6cca7665c
4 schema:citation sg:pub.10.1007/978-1-4612-2706-9
5 sg:pub.10.1007/bf01564502
6 https://doi.org/10.1016/0021-9991(90)90116-i
7 https://doi.org/10.1016/0096-3003(95)00099-2
8 https://doi.org/10.1016/s0019-9958(80)90857-8
9 https://doi.org/10.1016/s0168-9274(97)00068-8
10 https://doi.org/10.1016/s0377-0427(00)00348-4
11 https://doi.org/10.1016/s0377-0427(97)00163-5
12 https://doi.org/10.1088/0953-4075/26/16/008
13 https://doi.org/10.1090/s0025-5718-00-01226-6
14 https://doi.org/10.1090/s0025-5718-03-01587-4
15 https://doi.org/10.1090/s0025-5718-99-01102-3
16 https://doi.org/10.1093/imanum/11.3.357
17 https://doi.org/10.1137/1.9781611971637
18 https://doi.org/10.1201/9781420010947
19 schema:datePublished 2009
20 schema:datePublishedReg 2009-01-01
21 schema:description We discuss a general approach to solve linear two points boundary value problems (BV) for ordinary differential equations of second and higher order. The combination of symbolic and numeric methods in a hybrid calculation allows us to derive solutions for boundary value problems in a symbolic and numeric representation. The combination of symbolic and numeric calculations simplifies not only the set up of iteration formulas which allow us to numerically represent the solution but also offers a way to standardize calculations and deliver a symbolic approximation of the solution. We use the properties of distributions and their approximations to set up interpolation formulas which are efficient and precise in the representation of solutions. In our examples we compare the exact results for our test examples with the numerical approximations to demonstrate that the solutions have an absolute error of about 10− 12. This order of accuracy is rarely reached by traditional numerical approaches, like sweep and shooting methods, but is within the limit of accuracy if we combine numerical methods with symbolic ones.
22 schema:editor N51c259a1412b43b3b8d3d32bc296bc54
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N79b751bae4914bce9cc2f15ab4b5b7db
27 schema:name Hybrid Solution of Two-Point Linear Boundary Value Problems
28 schema:pagination 373-391
29 schema:productId N3bb9a545f76a42d6951f897dabcc4148
30 N5edc4d22b9944a1c812901370fe9ace2
31 N6127aab8c45f42f687831f1c125a7c00
32 schema:publisher N21f2159e24f44198b91615f809d8f2ed
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022364314
34 https://doi.org/10.1007/978-3-642-04103-7_31
35 schema:sdDatePublished 2019-04-15T16:54
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N871e57528e34468babc9c44a730fbc2d
38 schema:url http://link.springer.com/10.1007/978-3-642-04103-7_31
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N21f2159e24f44198b91615f809d8f2ed schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N28510ab0e50b47d8b900e3f015cd19e2 schema:familyName Gerdt
46 schema:givenName Vladimir P.
47 rdf:type schema:Person
48 N3bb9a545f76a42d6951f897dabcc4148 schema:name dimensions_id
49 schema:value pub.1022364314
50 rdf:type schema:PropertyValue
51 N50d403b1ecaf43deaf1a5f55aecbc151 rdf:first sg:person.01247751074.51
52 rdf:rest rdf:nil
53 N51c259a1412b43b3b8d3d32bc296bc54 rdf:first N28510ab0e50b47d8b900e3f015cd19e2
54 rdf:rest N6938f4d4bfc14d5cad3ddb0c13ee2128
55 N5edc4d22b9944a1c812901370fe9ace2 schema:name readcube_id
56 schema:value 6a8c4406a96abff1d358eafc8e49fad93ba73f8f1d7d5d282de8ed5e2b3b121d
57 rdf:type schema:PropertyValue
58 N6127aab8c45f42f687831f1c125a7c00 schema:name doi
59 schema:value 10.1007/978-3-642-04103-7_31
60 rdf:type schema:PropertyValue
61 N667870ff2ca147dea5c286d053c61961 rdf:first N9312f2ba9ce54649be915b949818f2f2
62 rdf:rest rdf:nil
63 N6938f4d4bfc14d5cad3ddb0c13ee2128 rdf:first Nfdd57fe749f043828578e5519dde0f32
64 rdf:rest N667870ff2ca147dea5c286d053c61961
65 N79b751bae4914bce9cc2f15ab4b5b7db schema:isbn 978-3-642-04102-0
66 978-3-642-04103-7
67 schema:name Computer Algebra in Scientific Computing
68 rdf:type schema:Book
69 N871e57528e34468babc9c44a730fbc2d schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N9312f2ba9ce54649be915b949818f2f2 schema:familyName Vorozhtsov
72 schema:givenName Evgenii V.
73 rdf:type schema:Person
74 Nf13bde2233a14e73a07d4cf6cca7665c rdf:first sg:person.011140724500.59
75 rdf:rest N50d403b1ecaf43deaf1a5f55aecbc151
76 Nfdd57fe749f043828578e5519dde0f32 schema:familyName Mayr
77 schema:givenName Ernst W.
78 rdf:type schema:Person
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:person.011140724500.59 schema:affiliation https://www.grid.ac/institutes/grid.187323.c
86 schema:familyName Youssef
87 schema:givenName M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011140724500.59
89 rdf:type schema:Person
90 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.187323.c
91 schema:familyName Baumann
92 schema:givenName G.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4612-2706-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081631
96 https://doi.org/10.1007/978-1-4612-2706-9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01564502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035672573
99 https://doi.org/10.1007/bf01564502
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0021-9991(90)90116-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1032145225
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0096-3003(95)00099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017961290
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0019-9958(80)90857-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033972241
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0168-9274(97)00068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041015654
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0377-0427(00)00348-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036760560
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0377-0427(97)00163-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013332375
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0953-4075/26/16/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039926538
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1090/s0025-5718-00-01226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046232959
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1090/s0025-5718-03-01587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029365081
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1090/s0025-5718-99-01102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002243633
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/imanum/11.3.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059688580
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/1.9781611971637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556642
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1201/9781420010947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725090
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.187323.c schema:alternateName German University in Cairo
128 schema:name Mathematics Department, German University in Cairo, New Cairo City, Egypt
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...