Multimodal Biometrics: Topics in Score Fusion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Luis Puente , M. Jesús Poza , Juan Miguel Gómez , Diego Carrero

ABSTRACT

This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation. More... »

PAGES

155-162

Book

TITLE

Computational Intelligence in Security for Information Systems

ISBN

978-3-642-04090-0
978-3-642-04091-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19

DOI

http://dx.doi.org/10.1007/978-3-642-04091-7_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006027378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puente", 
        "givenName": "Luis", 
        "id": "sg:person.013702771755.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702771755.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poza", 
        "givenName": "M. Jes\u00fas", 
        "id": "sg:person.015122571245.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122571245.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez", 
        "givenName": "Juan Miguel", 
        "id": "sg:person.014065273523.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065273523.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrero", 
        "givenName": "Diego", 
        "id": "sg:person.010610041445.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610041445.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(04)00297-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054599379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:20031078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.368145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eurcon.2007.4400309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093422291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccst.2007.4373463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095076232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation.", 
    "editor": [
      {
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Gastaldo", 
        "givenName": "Paolo", 
        "type": "Person"
      }, 
      {
        "familyName": "Zunino", 
        "givenName": "Rodolfo", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04091-7_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04090-0", 
        "978-3-642-04091-7"
      ], 
      "name": "Computational Intelligence in Security for Information Systems", 
      "type": "Book"
    }, 
    "name": "Multimodal Biometrics: Topics in Score Fusion", 
    "pagination": "155-162", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04091-7_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1cb613eb34cfb9e7e3ff8ded62150180e6899203d55fbecc5ebad1ea6f2bfb09"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006027378"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04091-7_19", 
      "https://app.dimensions.ai/details/publication/pub.1006027378"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04091-7_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04091-7_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N466156bd0fdf4884aee128dfe9bc52b2
4 schema:citation https://doi.org/10.1016/s0031-3203(04)00297-3
5 https://doi.org/10.1016/s0167-8655(03)00079-5
6 https://doi.org/10.1049/ip-vis:20031078
7 https://doi.org/10.1109/34.368145
8 https://doi.org/10.1109/34.667881
9 https://doi.org/10.1109/ccst.2007.4373463
10 https://doi.org/10.1109/eurcon.2007.4400309
11 schema:datePublished 2009
12 schema:datePublishedReg 2009-01-01
13 schema:description This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation.
14 schema:editor Nce6b5c2a8c6641aeb85674acf6483279
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Ncc8c09f681c74fa991a4c11b8b221ffa
19 schema:name Multimodal Biometrics: Topics in Score Fusion
20 schema:pagination 155-162
21 schema:productId N467f62ac89d44f56a0ace52f54b2eec8
22 Nb0db037bb2f74e73b07d34c793b81b5b
23 Nbbdbc83c2bc64d0291ec11a800eb3e53
24 schema:publisher Nd486e69c90574d089203d2e399a1478f
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006027378
26 https://doi.org/10.1007/978-3-642-04091-7_19
27 schema:sdDatePublished 2019-04-15T21:56
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N740e0437e49c41a986e57cc4c8216427
30 schema:url http://link.springer.com/10.1007/978-3-642-04091-7_19
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N30d5ed8b4c09478c84e5a64ee3fe8698 rdf:first sg:person.014065273523.17
35 rdf:rest Nab733d2821904c2f91cb4ea2ea87c17f
36 N3f50e436ecf44534ae8d013ae628ccc7 rdf:first N78af2fa2552e4b43b9d3121f2c46528a
37 rdf:rest N97b5ffb4964448b9a28fd51eb8e38309
38 N466156bd0fdf4884aee128dfe9bc52b2 rdf:first sg:person.013702771755.11
39 rdf:rest N6ab731ab1df04bb7919114d222fd839e
40 N467f62ac89d44f56a0ace52f54b2eec8 schema:name readcube_id
41 schema:value 1cb613eb34cfb9e7e3ff8ded62150180e6899203d55fbecc5ebad1ea6f2bfb09
42 rdf:type schema:PropertyValue
43 N6ab731ab1df04bb7919114d222fd839e rdf:first sg:person.015122571245.27
44 rdf:rest N30d5ed8b4c09478c84e5a64ee3fe8698
45 N740e0437e49c41a986e57cc4c8216427 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N78af2fa2552e4b43b9d3121f2c46528a schema:familyName Zunino
48 schema:givenName Rodolfo
49 rdf:type schema:Person
50 N84c5644256e14608b2badeff453640da rdf:first Nb8c4b37212594cdfba296d116c4038be
51 rdf:rest N3f50e436ecf44534ae8d013ae628ccc7
52 N97b5ffb4964448b9a28fd51eb8e38309 rdf:first Nd7d8db66772b4465b3cc914fbcbb538e
53 rdf:rest rdf:nil
54 Nab733d2821904c2f91cb4ea2ea87c17f rdf:first sg:person.010610041445.86
55 rdf:rest rdf:nil
56 Nb0db037bb2f74e73b07d34c793b81b5b schema:name dimensions_id
57 schema:value pub.1006027378
58 rdf:type schema:PropertyValue
59 Nb8c4b37212594cdfba296d116c4038be schema:familyName Gastaldo
60 schema:givenName Paolo
61 rdf:type schema:Person
62 Nbbdbc83c2bc64d0291ec11a800eb3e53 schema:name doi
63 schema:value 10.1007/978-3-642-04091-7_19
64 rdf:type schema:PropertyValue
65 Ncc8c09f681c74fa991a4c11b8b221ffa schema:isbn 978-3-642-04090-0
66 978-3-642-04091-7
67 schema:name Computational Intelligence in Security for Information Systems
68 rdf:type schema:Book
69 Nce6b5c2a8c6641aeb85674acf6483279 rdf:first Nd013de7fcb8a470a9ce0eb7bd30fd9b0
70 rdf:rest N84c5644256e14608b2badeff453640da
71 Nd013de7fcb8a470a9ce0eb7bd30fd9b0 schema:familyName Herrero
72 schema:givenName Álvaro
73 rdf:type schema:Person
74 Nd486e69c90574d089203d2e399a1478f schema:location Berlin, Heidelberg
75 schema:name Springer Berlin Heidelberg
76 rdf:type schema:Organisation
77 Nd7d8db66772b4465b3cc914fbcbb538e schema:familyName Corchado
78 schema:givenName Emilio
79 rdf:type schema:Person
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.010610041445.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
87 schema:familyName Carrero
88 schema:givenName Diego
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610041445.86
90 rdf:type schema:Person
91 sg:person.013702771755.11 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
92 schema:familyName Puente
93 schema:givenName Luis
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702771755.11
95 rdf:type schema:Person
96 sg:person.014065273523.17 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
97 schema:familyName Gómez
98 schema:givenName Juan Miguel
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065273523.17
100 rdf:type schema:Person
101 sg:person.015122571245.27 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
102 schema:familyName Poza
103 schema:givenName M. Jesús
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122571245.27
105 rdf:type schema:Person
106 https://doi.org/10.1016/s0031-3203(04)00297-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054599379
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0167-8655(03)00079-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386059
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1049/ip-vis:20031078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860889
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/34.368145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156094
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/ccst.2007.4373463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095076232
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/eurcon.2007.4400309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093422291
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
121 schema:name Universidad Carlos III de Madrid, Avda Universidad, 30., 28911 Leganés, Madrid, Spain
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...