Multimodal Biometrics: Topics in Score Fusion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Luis Puente , M. Jesús Poza , Juan Miguel Gómez , Diego Carrero

ABSTRACT

This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation. More... »

PAGES

155-162

Book

TITLE

Computational Intelligence in Security for Information Systems

ISBN

978-3-642-04090-0
978-3-642-04091-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19

DOI

http://dx.doi.org/10.1007/978-3-642-04091-7_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006027378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puente", 
        "givenName": "Luis", 
        "id": "sg:person.013702771755.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702771755.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poza", 
        "givenName": "M. Jes\u00fas", 
        "id": "sg:person.015122571245.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122571245.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez", 
        "givenName": "Juan Miguel", 
        "id": "sg:person.014065273523.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065273523.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Universidad Carlos III de Madrid, Avda Universidad, 30., 28911\u00a0Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrero", 
        "givenName": "Diego", 
        "id": "sg:person.010610041445.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610041445.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(03)00079-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053386059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(04)00297-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054599379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:20031078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.368145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eurcon.2007.4400309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093422291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccst.2007.4373463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095076232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation.", 
    "editor": [
      {
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Gastaldo", 
        "givenName": "Paolo", 
        "type": "Person"
      }, 
      {
        "familyName": "Zunino", 
        "givenName": "Rodolfo", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-04091-7_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-04090-0", 
        "978-3-642-04091-7"
      ], 
      "name": "Computational Intelligence in Security for Information Systems", 
      "type": "Book"
    }, 
    "name": "Multimodal Biometrics: Topics in Score Fusion", 
    "pagination": "155-162", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-04091-7_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1cb613eb34cfb9e7e3ff8ded62150180e6899203d55fbecc5ebad1ea6f2bfb09"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006027378"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-04091-7_19", 
      "https://app.dimensions.ai/details/publication/pub.1006027378"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-04091-7_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-04091-7_19'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-04091-7_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3d90bad4b4d945d7b16e2bad7d1b5161
4 schema:citation https://doi.org/10.1016/s0031-3203(04)00297-3
5 https://doi.org/10.1016/s0167-8655(03)00079-5
6 https://doi.org/10.1049/ip-vis:20031078
7 https://doi.org/10.1109/34.368145
8 https://doi.org/10.1109/34.667881
9 https://doi.org/10.1109/ccst.2007.4373463
10 https://doi.org/10.1109/eurcon.2007.4400309
11 schema:datePublished 2009
12 schema:datePublishedReg 2009-01-01
13 schema:description This paper describes how the last cutting-edge advances in Computational Intelligence are being applied to the field of biometric security. We analyze multimodal identification systems and particularly the score fusion technique and some issues related with it. Fundamentally, the paper deals with the scores normalization problem in depth, which is one of the most critical issues with a dramatic impact on the final performance of multibiometric systems. Authors show in this paper the results obtained using a number of fusion algorithms (Neural Networks, SVM, Weighted Sum, etc.) on the scores generated with three independent monomodal biometric systems (the modalities are Iris, Signature and Voice). The paper shows the behavior of the most popular score normalization techniques (z-norm, tanh, MAD, etc), and proposes a new score normalization procedure with an optimized performance harnessing tested fusion techniques and outperforming previous results through a proof-of-concept implementation.
14 schema:editor Nb843ef85570d4c91a081449ae247bb47
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3fb19ba24ba64a5aabd83e95ef050887
19 schema:name Multimodal Biometrics: Topics in Score Fusion
20 schema:pagination 155-162
21 schema:productId N28eab496899844068cec771a003e9067
22 N4ce0fa893bfe4f10b6776baebfcd4b0a
23 Na55f2b0323aa456ba95908abe3f624a8
24 schema:publisher N0afd8819a16d4108b7bb5e23b6552073
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006027378
26 https://doi.org/10.1007/978-3-642-04091-7_19
27 schema:sdDatePublished 2019-04-15T21:56
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N5b22251231e64e9a9f9b93d3354e4cb6
30 schema:url http://link.springer.com/10.1007/978-3-642-04091-7_19
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0afd8819a16d4108b7bb5e23b6552073 schema:location Berlin, Heidelberg
35 schema:name Springer Berlin Heidelberg
36 rdf:type schema:Organisation
37 N28eab496899844068cec771a003e9067 schema:name dimensions_id
38 schema:value pub.1006027378
39 rdf:type schema:PropertyValue
40 N3d90bad4b4d945d7b16e2bad7d1b5161 rdf:first sg:person.013702771755.11
41 rdf:rest N800441fdeaa243b5910a89977dd5d344
42 N3fb19ba24ba64a5aabd83e95ef050887 schema:isbn 978-3-642-04090-0
43 978-3-642-04091-7
44 schema:name Computational Intelligence in Security for Information Systems
45 rdf:type schema:Book
46 N4a4613629f784678844825ac488cebed rdf:first sg:person.010610041445.86
47 rdf:rest rdf:nil
48 N4ce0fa893bfe4f10b6776baebfcd4b0a schema:name doi
49 schema:value 10.1007/978-3-642-04091-7_19
50 rdf:type schema:PropertyValue
51 N5b22251231e64e9a9f9b93d3354e4cb6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N79e76a47f29344ddb43018752250a897 schema:familyName Herrero
54 schema:givenName Álvaro
55 rdf:type schema:Person
56 N800441fdeaa243b5910a89977dd5d344 rdf:first sg:person.015122571245.27
57 rdf:rest Nc586477cab184e47a0a59ebf72e5cac6
58 N83e40389dcdf4fb48b3eba94d65158d4 rdf:first Ne985d79d982a4e8fb640d9c2f60eed7c
59 rdf:rest Ncbfbd07be3a447929ca48e80aceb9f0a
60 Na55f2b0323aa456ba95908abe3f624a8 schema:name readcube_id
61 schema:value 1cb613eb34cfb9e7e3ff8ded62150180e6899203d55fbecc5ebad1ea6f2bfb09
62 rdf:type schema:PropertyValue
63 Nb843ef85570d4c91a081449ae247bb47 rdf:first N79e76a47f29344ddb43018752250a897
64 rdf:rest N83e40389dcdf4fb48b3eba94d65158d4
65 Nc586477cab184e47a0a59ebf72e5cac6 rdf:first sg:person.014065273523.17
66 rdf:rest N4a4613629f784678844825ac488cebed
67 Ncab88bce263e449789aefbf8b6af6dd2 schema:familyName Zunino
68 schema:givenName Rodolfo
69 rdf:type schema:Person
70 Ncbfbd07be3a447929ca48e80aceb9f0a rdf:first Ncab88bce263e449789aefbf8b6af6dd2
71 rdf:rest Ned8db2c3930140d3a088f4978e389735
72 Ne985d79d982a4e8fb640d9c2f60eed7c schema:familyName Gastaldo
73 schema:givenName Paolo
74 rdf:type schema:Person
75 Ned8db2c3930140d3a088f4978e389735 rdf:first Nf4b6f0f23ead4b1790d2ab5a01c9c1b2
76 rdf:rest rdf:nil
77 Nf4b6f0f23ead4b1790d2ab5a01c9c1b2 schema:familyName Corchado
78 schema:givenName Emilio
79 rdf:type schema:Person
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.010610041445.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
87 schema:familyName Carrero
88 schema:givenName Diego
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010610041445.86
90 rdf:type schema:Person
91 sg:person.013702771755.11 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
92 schema:familyName Puente
93 schema:givenName Luis
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702771755.11
95 rdf:type schema:Person
96 sg:person.014065273523.17 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
97 schema:familyName Gómez
98 schema:givenName Juan Miguel
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065273523.17
100 rdf:type schema:Person
101 sg:person.015122571245.27 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
102 schema:familyName Poza
103 schema:givenName M. Jesús
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015122571245.27
105 rdf:type schema:Person
106 https://doi.org/10.1016/s0031-3203(04)00297-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054599379
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0167-8655(03)00079-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053386059
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1049/ip-vis:20031078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860889
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/34.368145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156094
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/ccst.2007.4373463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095076232
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/eurcon.2007.4400309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093422291
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
121 schema:name Universidad Carlos III de Madrid, Avda Universidad, 30., 28911 Leganés, Madrid, Spain
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...