Diffusion Weighted Magnetic Resonance Imaging of the Human Kidney: “Best Regression” for the Determination of Diffusion Constants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

H. J. Wittsack , R. S. Lanzman , U. Mödder , D. Blondin

ABSTRACT

The use of diffusion weighted magnetic resonance imaging (DWI) has been more and more extended to abdominal organs. In comparison to the human brain the tissue of the kidney shows considerably different microscopic structure, which must be considered in the calculating of the apparent diffusion constant (ADC). In most studies ADC is determined using a mono-exponential model. Due to the high vascularization in the kidney a bi-exponential approach is reasonable to allow for a differentiation between pure diffusion fraction and a fraction influenced by perfusion effects.In our work we analyzed whether the mono- or bi-exponential approach is more accurate from statistical point of view for in-vivo DWI of the kidney. For this purpose we acquired DWI in five healthy subjects. Further we simulated a DWI signal varying the value of the perfusion fraction to investigate the relation between the results of mono- and bi-exponential analysis. Besides we simulated a DWI signal at different signal to noise ratios to analyze the influence of noise on the ADC resulting from the mono- and bi-exponential approach.The statistical analysis of F-test, Akaike’s information criterion (AIC) and Schwarz criterion (FC) of the in-vivo data shows that the bi-exponential approach represents the “best regression” to determine ADC. In five in-vivo investigations 87% (F-test), 95 % (AIC) and 92% (SC) of the pixels possessed bi-exponential characteristics. The simulation of the DWI signal asserts increasing mono-exponential calculated ADC values with rising perfusion fraction within the tissue. Further our simulation shows that the variations of the mono-exponential results with increasing noise are less than that of bi-exponential approach. More... »

PAGES

119-122

Book

TITLE

World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany

ISBN

978-3-642-03878-5
978-3-642-03879-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-03879-2_34

DOI

http://dx.doi.org/10.1007/978-3-642-03879-2_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004430735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14778.3d", 
          "name": [
            "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wittsack", 
        "givenName": "H. J.", 
        "id": "sg:person.0675141725.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675141725.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14778.3d", 
          "name": [
            "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lanzman", 
        "givenName": "R. S.", 
        "id": "sg:person.01332457401.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332457401.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14778.3d", 
          "name": [
            "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f6dder", 
        "givenName": "U.", 
        "id": "sg:person.0637037231.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637037231.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14778.3d", 
          "name": [
            "Institute of Radiology, D\u00fcsseldorf University Hospital, D\u00fcsseldorf, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blondin", 
        "givenName": "D.", 
        "id": "sg:person.0777602654.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777602654.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The use of diffusion weighted magnetic resonance imaging (DWI) has been more and more extended to abdominal organs. In comparison to the human brain the tissue of the kidney shows considerably different microscopic structure, which must be considered in the calculating of the apparent diffusion constant (ADC). In most studies ADC is determined using a mono-exponential model. Due to the high vascularization in the kidney a bi-exponential approach is reasonable to allow for a differentiation between pure diffusion fraction and a fraction influenced by perfusion effects.In our work we analyzed whether the mono- or bi-exponential approach is more accurate from statistical point of view for in-vivo DWI of the kidney. For this purpose we acquired DWI in five healthy subjects. Further we simulated a DWI signal varying the value of the perfusion fraction to investigate the relation between the results of mono- and bi-exponential analysis. Besides we simulated a DWI signal at different signal to noise ratios to analyze the influence of noise on the ADC resulting from the mono- and bi-exponential approach.The statistical analysis of F-test, Akaike\u2019s information criterion (AIC) and Schwarz criterion (FC) of the in-vivo data shows that the bi-exponential approach represents the \u201cbest regression\u201d to determine ADC. In five in-vivo investigations 87% (F-test), 95 % (AIC) and 92% (SC) of the pixels possessed bi-exponential characteristics. The simulation of the DWI signal asserts increasing mono-exponential calculated ADC values with rising perfusion fraction within the tissue. Further our simulation shows that the variations of the mono-exponential results with increasing noise are less than that of bi-exponential approach.", 
    "editor": [
      {
        "familyName": "D\u00f6ssel", 
        "givenName": "Olaf", 
        "type": "Person"
      }, 
      {
        "familyName": "Schlegel", 
        "givenName": "Wolfgang C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-03879-2_34", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-03878-5", 
        "978-3-642-03879-2"
      ], 
      "name": "World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany", 
      "type": "Book"
    }, 
    "keywords": [
      "Akaike information criterion", 
      "information criterion", 
      "statistical point", 
      "influence of noise", 
      "Schwarz criterion", 
      "different microscopic structures", 
      "magnetic resonance imaging", 
      "diffusion constants", 
      "noise", 
      "statistical analysis", 
      "simulations", 
      "resonance imaging", 
      "result of mono", 
      "DWI signal", 
      "perfusion fraction", 
      "use of diffusion", 
      "F-test", 
      "microscopic structure", 
      "different signals", 
      "Diffusion-Weighted Magnetic Resonance Imaging", 
      "approach", 
      "Weighted Magnetic Resonance Imaging", 
      "diffusion", 
      "healthy subjects", 
      "signals", 
      "abdominal organs", 
      "calculating", 
      "high vascularization", 
      "kidney", 
      "ADC values", 
      "human kidney", 
      "mono-exponential model", 
      "perfusion effects", 
      "model", 
      "bi-exponential analysis", 
      "calculated ADC values", 
      "human brain", 
      "vivo data", 
      "DWI", 
      "good regression", 
      "point", 
      "criteria", 
      "constants", 
      "results", 
      "regression", 
      "tissue", 
      "values", 
      "imaging", 
      "structure", 
      "analysis", 
      "brain", 
      "ADC", 
      "vascularization", 
      "work", 
      "organs", 
      "comparison", 
      "apparent diffusion", 
      "diffusion fraction", 
      "subjects", 
      "relation", 
      "fraction", 
      "pixels", 
      "variation", 
      "data", 
      "differentiation", 
      "determination", 
      "view", 
      "ratio", 
      "characteristics", 
      "influence", 
      "effect", 
      "use", 
      "purpose", 
      "mono"
    ], 
    "name": "Diffusion Weighted Magnetic Resonance Imaging of the Human Kidney: \u201cBest Regression\u201d for the Determination of Diffusion Constants", 
    "pagination": "119-122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004430735"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-03879-2_34"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-03879-2_34", 
      "https://app.dimensions.ai/details/publication/pub.1004430735"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_252.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-03879-2_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03879-2_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03879-2_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03879-2_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03879-2_34'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      22 PREDICATES      99 URIs      92 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-03879-2_34 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N54c220aea3514105b5a12483abfc71d2
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description The use of diffusion weighted magnetic resonance imaging (DWI) has been more and more extended to abdominal organs. In comparison to the human brain the tissue of the kidney shows considerably different microscopic structure, which must be considered in the calculating of the apparent diffusion constant (ADC). In most studies ADC is determined using a mono-exponential model. Due to the high vascularization in the kidney a bi-exponential approach is reasonable to allow for a differentiation between pure diffusion fraction and a fraction influenced by perfusion effects.In our work we analyzed whether the mono- or bi-exponential approach is more accurate from statistical point of view for in-vivo DWI of the kidney. For this purpose we acquired DWI in five healthy subjects. Further we simulated a DWI signal varying the value of the perfusion fraction to investigate the relation between the results of mono- and bi-exponential analysis. Besides we simulated a DWI signal at different signal to noise ratios to analyze the influence of noise on the ADC resulting from the mono- and bi-exponential approach.The statistical analysis of F-test, Akaike’s information criterion (AIC) and Schwarz criterion (FC) of the in-vivo data shows that the bi-exponential approach represents the “best regression” to determine ADC. In five in-vivo investigations 87% (F-test), 95 % (AIC) and 92% (SC) of the pixels possessed bi-exponential characteristics. The simulation of the DWI signal asserts increasing mono-exponential calculated ADC values with rising perfusion fraction within the tissue. Further our simulation shows that the variations of the mono-exponential results with increasing noise are less than that of bi-exponential approach.
7 schema:editor N2ea49d991fb4411382ca2276bbf6effd
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N4c91c14744b0418dac186ce16355e584
11 schema:keywords ADC
12 ADC values
13 Akaike information criterion
14 DWI
15 DWI signal
16 Diffusion-Weighted Magnetic Resonance Imaging
17 F-test
18 Schwarz criterion
19 Weighted Magnetic Resonance Imaging
20 abdominal organs
21 analysis
22 apparent diffusion
23 approach
24 bi-exponential analysis
25 brain
26 calculated ADC values
27 calculating
28 characteristics
29 comparison
30 constants
31 criteria
32 data
33 determination
34 different microscopic structures
35 different signals
36 differentiation
37 diffusion
38 diffusion constants
39 diffusion fraction
40 effect
41 fraction
42 good regression
43 healthy subjects
44 high vascularization
45 human brain
46 human kidney
47 imaging
48 influence
49 influence of noise
50 information criterion
51 kidney
52 magnetic resonance imaging
53 microscopic structure
54 model
55 mono
56 mono-exponential model
57 noise
58 organs
59 perfusion effects
60 perfusion fraction
61 pixels
62 point
63 purpose
64 ratio
65 regression
66 relation
67 resonance imaging
68 result of mono
69 results
70 signals
71 simulations
72 statistical analysis
73 statistical point
74 structure
75 subjects
76 tissue
77 use
78 use of diffusion
79 values
80 variation
81 vascularization
82 view
83 vivo data
84 work
85 schema:name Diffusion Weighted Magnetic Resonance Imaging of the Human Kidney: “Best Regression” for the Determination of Diffusion Constants
86 schema:pagination 119-122
87 schema:productId N567e3a47a3c14fc7ab837a92b15122f4
88 N7ca16517ac2748079cc7e1f2582e626b
89 schema:publisher N3878d9f9a3fe4be5ad02b0087efad779
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004430735
91 https://doi.org/10.1007/978-3-642-03879-2_34
92 schema:sdDatePublished 2022-08-04T17:17
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N6880c8f40850463bb1dd2dc33427c8b2
95 schema:url https://doi.org/10.1007/978-3-642-03879-2_34
96 sgo:license sg:explorer/license/
97 sgo:sdDataset chapters
98 rdf:type schema:Chapter
99 N0ac2cdb6e1cf46c0b0391610addffb4d rdf:first sg:person.0777602654.02
100 rdf:rest rdf:nil
101 N2ea49d991fb4411382ca2276bbf6effd rdf:first N50a01518ddca44ae8a0062447a505776
102 rdf:rest N7d95377192d2472a9ab7c06f593e281a
103 N3878d9f9a3fe4be5ad02b0087efad779 schema:name Springer Nature
104 rdf:type schema:Organisation
105 N3f5c9482d70a463688f3311856652867 schema:familyName Schlegel
106 schema:givenName Wolfgang C.
107 rdf:type schema:Person
108 N4c91c14744b0418dac186ce16355e584 schema:isbn 978-3-642-03878-5
109 978-3-642-03879-2
110 schema:name World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany
111 rdf:type schema:Book
112 N50a01518ddca44ae8a0062447a505776 schema:familyName Dössel
113 schema:givenName Olaf
114 rdf:type schema:Person
115 N54c220aea3514105b5a12483abfc71d2 rdf:first sg:person.0675141725.09
116 rdf:rest Ndc998d4c22aa4218b802944bf97ca873
117 N567e3a47a3c14fc7ab837a92b15122f4 schema:name dimensions_id
118 schema:value pub.1004430735
119 rdf:type schema:PropertyValue
120 N6880c8f40850463bb1dd2dc33427c8b2 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N7ca16517ac2748079cc7e1f2582e626b schema:name doi
123 schema:value 10.1007/978-3-642-03879-2_34
124 rdf:type schema:PropertyValue
125 N7d95377192d2472a9ab7c06f593e281a rdf:first N3f5c9482d70a463688f3311856652867
126 rdf:rest rdf:nil
127 Ndc998d4c22aa4218b802944bf97ca873 rdf:first sg:person.01332457401.96
128 rdf:rest Nfbcfb0bfef5445ac981ce3fe31934b7e
129 Nfbcfb0bfef5445ac981ce3fe31934b7e rdf:first sg:person.0637037231.08
130 rdf:rest N0ac2cdb6e1cf46c0b0391610addffb4d
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
135 schema:name Clinical Sciences
136 rdf:type schema:DefinedTerm
137 sg:person.01332457401.96 schema:affiliation grid-institutes:grid.14778.3d
138 schema:familyName Lanzman
139 schema:givenName R. S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332457401.96
141 rdf:type schema:Person
142 sg:person.0637037231.08 schema:affiliation grid-institutes:grid.14778.3d
143 schema:familyName Mödder
144 schema:givenName U.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637037231.08
146 rdf:type schema:Person
147 sg:person.0675141725.09 schema:affiliation grid-institutes:grid.14778.3d
148 schema:familyName Wittsack
149 schema:givenName H. J.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675141725.09
151 rdf:type schema:Person
152 sg:person.0777602654.02 schema:affiliation grid-institutes:grid.14778.3d
153 schema:familyName Blondin
154 schema:givenName D.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777602654.02
156 rdf:type schema:Person
157 grid-institutes:grid.14778.3d schema:alternateName Institute of Radiology, Düsseldorf University Hospital, Düsseldorf, Germany
158 schema:name Institute of Radiology, Düsseldorf University Hospital, Düsseldorf, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...