The Longest Path Problem Is Polynomial on Interval Graphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Kyriaki Ioannidou , George B. Mertzios , Stavros D. Nikolopoulos

ABSTRACT

The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach. More... »

PAGES

403-414

References to SciGraph publications

Book

TITLE

Mathematical Foundations of Computer Science 2009

ISBN

978-3-642-03815-0
978-3-642-03816-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35

DOI

http://dx.doi.org/10.1007/978-3-642-03816-7_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034196859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ioannina", 
          "id": "https://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Computer Science, University of Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannidou", 
        "givenName": "Kyriaki", 
        "id": "sg:person.07355624061.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355624061.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Computer Science, RWTH Aachen University, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mertzios", 
        "givenName": "George B.", 
        "id": "sg:person.07470745761.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470745761.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ioannina", 
          "id": "https://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Computer Science, University of Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolopoulos", 
        "givenName": "Stavros D.", 
        "id": "sg:person.011724474746.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474746.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.dam.2009.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010457306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(85)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011139166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(85)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011139166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2007.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(90)90064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017022514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(83)90078-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018477486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(95)00057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019406771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(93)90223-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019842874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30551-4_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021479036", 
          "https://doi.org/10.1007/978-3-540-30551-4_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30551-4_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021479036", 
          "https://doi.org/10.1007/978-3-540-30551-4_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00571188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025398696", 
          "https://doi.org/10.1007/bf00571188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00571188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025398696", 
          "https://doi.org/10.1007/bf00571188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(89)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037815836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(01)00198-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038695986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-6774(03)00093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038966763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-6774(03)00093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038966763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(88)90091-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042362113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2007.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045057680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92182-0_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045644398", 
          "https://doi.org/10.1007/978-3-540-92182-0_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92182-0_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045644398", 
          "https://doi.org/10.1007/978-3-540-92182-0_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1995.2.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietisy/e91-d.2.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059672421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0205049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0211056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841672"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.", 
    "editor": [
      {
        "familyName": "Kr\u00e1lovi\u010d", 
        "givenName": "Rastislav", 
        "type": "Person"
      }, 
      {
        "familyName": "Niwi\u0144ski", 
        "givenName": "Damian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-03816-7_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-03815-0", 
        "978-3-642-03816-7"
      ], 
      "name": "Mathematical Foundations of Computer Science 2009", 
      "type": "Book"
    }, 
    "name": "The Longest Path Problem Is Polynomial on Interval Graphs", 
    "pagination": "403-414", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-03816-7_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2e70d57976669f8d9ced086714f4ea166615e3f4e4b33fb817df2316f09e909"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034196859"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-03816-7_35", 
      "https://app.dimensions.ai/details/publication/pub.1034196859"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-03816-7_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-03816-7_35 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N2f365b569c1f4599b5dc7240ea74c288
4 schema:citation sg:pub.10.1007/978-3-540-30551-4_74
5 sg:pub.10.1007/978-3-540-92182-0_66
6 sg:pub.10.1007/bf00571188
7 sg:pub.10.1007/bf02523689
8 https://doi.org/10.1016/0012-365x(93)90223-g
9 https://doi.org/10.1016/0012-365x(95)00057-4
10 https://doi.org/10.1016/0020-0190(83)90078-9
11 https://doi.org/10.1016/0020-0190(85)90050-x
12 https://doi.org/10.1016/0020-0190(88)90091-9
13 https://doi.org/10.1016/0020-0190(89)90059-8
14 https://doi.org/10.1016/0020-0190(90)90064-5
15 https://doi.org/10.1016/j.dam.2009.12.006
16 https://doi.org/10.1016/j.ipl.2007.02.010
17 https://doi.org/10.1016/j.tcs.2007.02.012
18 https://doi.org/10.1016/s0020-0190(01)00198-3
19 https://doi.org/10.1016/s0196-6774(03)00093-2
20 https://doi.org/10.1089/cmb.1995.2.139
21 https://doi.org/10.1093/ietisy/e91-d.2.170
22 https://doi.org/10.1137/0205049
23 https://doi.org/10.1137/0211056
24 schema:datePublished 2009
25 schema:datePublishedReg 2009-01-01
26 schema:description The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.
27 schema:editor N390022950fed412fbaa89cf7dc385e61
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N87a721bc7e7747208d83d7f4aaf56216
32 schema:name The Longest Path Problem Is Polynomial on Interval Graphs
33 schema:pagination 403-414
34 schema:productId N16b54aa89ec24cc988d41378ab795007
35 N1cd40739c7a44d36a208204dfa96890f
36 N61fa4a48be7b4769934ad776c5ce7810
37 schema:publisher Nc04af2a966b041b9ac24d1808a11df13
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034196859
39 https://doi.org/10.1007/978-3-642-03816-7_35
40 schema:sdDatePublished 2019-04-15T11:35
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nd4879021fdc346d78b19c7d576ae1b5e
43 schema:url http://link.springer.com/10.1007/978-3-642-03816-7_35
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N06334ba5a5894b738875e6386f91bbb7 rdf:first sg:person.011724474746.51
48 rdf:rest rdf:nil
49 N0ad38485910d4c9495ef6874db944dd1 schema:familyName Královič
50 schema:givenName Rastislav
51 rdf:type schema:Person
52 N16b54aa89ec24cc988d41378ab795007 schema:name readcube_id
53 schema:value a2e70d57976669f8d9ced086714f4ea166615e3f4e4b33fb817df2316f09e909
54 rdf:type schema:PropertyValue
55 N1cd40739c7a44d36a208204dfa96890f schema:name doi
56 schema:value 10.1007/978-3-642-03816-7_35
57 rdf:type schema:PropertyValue
58 N2f365b569c1f4599b5dc7240ea74c288 rdf:first sg:person.07355624061.11
59 rdf:rest N7e7a6523e6e346fc91ab8c2df256efbc
60 N390022950fed412fbaa89cf7dc385e61 rdf:first N0ad38485910d4c9495ef6874db944dd1
61 rdf:rest N5be62cedb0984657af36d2ced89a39fd
62 N5be62cedb0984657af36d2ced89a39fd rdf:first N996127f77a8b47f3b47bcb66388707fb
63 rdf:rest rdf:nil
64 N61fa4a48be7b4769934ad776c5ce7810 schema:name dimensions_id
65 schema:value pub.1034196859
66 rdf:type schema:PropertyValue
67 N7e7a6523e6e346fc91ab8c2df256efbc rdf:first sg:person.07470745761.85
68 rdf:rest N06334ba5a5894b738875e6386f91bbb7
69 N87a721bc7e7747208d83d7f4aaf56216 schema:isbn 978-3-642-03815-0
70 978-3-642-03816-7
71 schema:name Mathematical Foundations of Computer Science 2009
72 rdf:type schema:Book
73 N996127f77a8b47f3b47bcb66388707fb schema:familyName Niwiński
74 schema:givenName Damian
75 rdf:type schema:Person
76 Nc04af2a966b041b9ac24d1808a11df13 schema:location Berlin, Heidelberg
77 schema:name Springer Berlin Heidelberg
78 rdf:type schema:Organisation
79 Nd4879021fdc346d78b19c7d576ae1b5e schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
85 schema:name Computation Theory and Mathematics
86 rdf:type schema:DefinedTerm
87 sg:person.011724474746.51 schema:affiliation https://www.grid.ac/institutes/grid.9594.1
88 schema:familyName Nikolopoulos
89 schema:givenName Stavros D.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474746.51
91 rdf:type schema:Person
92 sg:person.07355624061.11 schema:affiliation https://www.grid.ac/institutes/grid.9594.1
93 schema:familyName Ioannidou
94 schema:givenName Kyriaki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355624061.11
96 rdf:type schema:Person
97 sg:person.07470745761.85 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
98 schema:familyName Mertzios
99 schema:givenName George B.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470745761.85
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-540-30551-4_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021479036
103 https://doi.org/10.1007/978-3-540-30551-4_74
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-540-92182-0_66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045644398
106 https://doi.org/10.1007/978-3-540-92182-0_66
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00571188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025398696
109 https://doi.org/10.1007/bf00571188
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02523689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048536748
112 https://doi.org/10.1007/bf02523689
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0012-365x(93)90223-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1019842874
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0012-365x(95)00057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019406771
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0020-0190(83)90078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018477486
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0020-0190(85)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011139166
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0020-0190(88)90091-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042362113
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0020-0190(89)90059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037815836
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0020-0190(90)90064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017022514
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.dam.2009.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010457306
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ipl.2007.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045057680
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tcs.2007.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217375
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0020-0190(01)00198-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038695986
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0196-6774(03)00093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038966763
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1089/cmb.1995.2.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245091
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/ietisy/e91-d.2.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059672421
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/0205049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841335
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/0211056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841672
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
147 schema:name Department of Computer Science, RWTH Aachen University, Germany
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.9594.1 schema:alternateName University of Ioannina
150 schema:name Department of Computer Science, University of Ioannina, Greece
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...