The Longest Path Problem Is Polynomial on Interval Graphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Kyriaki Ioannidou , George B. Mertzios , Stavros D. Nikolopoulos

ABSTRACT

The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach. More... »

PAGES

403-414

References to SciGraph publications

Book

TITLE

Mathematical Foundations of Computer Science 2009

ISBN

978-3-642-03815-0
978-3-642-03816-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35

DOI

http://dx.doi.org/10.1007/978-3-642-03816-7_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034196859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ioannina", 
          "id": "https://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Computer Science, University of Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannidou", 
        "givenName": "Kyriaki", 
        "id": "sg:person.07355624061.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355624061.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RWTH Aachen University", 
          "id": "https://www.grid.ac/institutes/grid.1957.a", 
          "name": [
            "Department of Computer Science, RWTH Aachen University, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mertzios", 
        "givenName": "George B.", 
        "id": "sg:person.07470745761.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470745761.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ioannina", 
          "id": "https://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Computer Science, University of Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolopoulos", 
        "givenName": "Stavros D.", 
        "id": "sg:person.011724474746.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474746.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.dam.2009.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010457306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(85)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011139166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(85)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011139166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2007.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(90)90064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017022514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(83)90078-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018477486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(95)00057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019406771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(93)90223-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019842874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30551-4_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021479036", 
          "https://doi.org/10.1007/978-3-540-30551-4_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30551-4_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021479036", 
          "https://doi.org/10.1007/978-3-540-30551-4_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00571188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025398696", 
          "https://doi.org/10.1007/bf00571188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00571188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025398696", 
          "https://doi.org/10.1007/bf00571188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(89)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037815836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(01)00198-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038695986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-6774(03)00093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038966763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-6774(03)00093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038966763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(88)90091-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042362113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2007.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045057680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92182-0_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045644398", 
          "https://doi.org/10.1007/978-3-540-92182-0_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-92182-0_66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045644398", 
          "https://doi.org/10.1007/978-3-540-92182-0_66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02523689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536748", 
          "https://doi.org/10.1007/bf02523689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1995.2.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietisy/e91-d.2.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059672421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0205049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0211056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841672"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.", 
    "editor": [
      {
        "familyName": "Kr\u00e1lovi\u010d", 
        "givenName": "Rastislav", 
        "type": "Person"
      }, 
      {
        "familyName": "Niwi\u0144ski", 
        "givenName": "Damian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-03816-7_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-03815-0", 
        "978-3-642-03816-7"
      ], 
      "name": "Mathematical Foundations of Computer Science 2009", 
      "type": "Book"
    }, 
    "name": "The Longest Path Problem Is Polynomial on Interval Graphs", 
    "pagination": "403-414", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-03816-7_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2e70d57976669f8d9ced086714f4ea166615e3f4e4b33fb817df2316f09e909"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034196859"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-03816-7_35", 
      "https://app.dimensions.ai/details/publication/pub.1034196859"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-03816-7_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_35'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-03816-7_35 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N89506ebb30c244d691d65ca4ca8b7a97
4 schema:citation sg:pub.10.1007/978-3-540-30551-4_74
5 sg:pub.10.1007/978-3-540-92182-0_66
6 sg:pub.10.1007/bf00571188
7 sg:pub.10.1007/bf02523689
8 https://doi.org/10.1016/0012-365x(93)90223-g
9 https://doi.org/10.1016/0012-365x(95)00057-4
10 https://doi.org/10.1016/0020-0190(83)90078-9
11 https://doi.org/10.1016/0020-0190(85)90050-x
12 https://doi.org/10.1016/0020-0190(88)90091-9
13 https://doi.org/10.1016/0020-0190(89)90059-8
14 https://doi.org/10.1016/0020-0190(90)90064-5
15 https://doi.org/10.1016/j.dam.2009.12.006
16 https://doi.org/10.1016/j.ipl.2007.02.010
17 https://doi.org/10.1016/j.tcs.2007.02.012
18 https://doi.org/10.1016/s0020-0190(01)00198-3
19 https://doi.org/10.1016/s0196-6774(03)00093-2
20 https://doi.org/10.1089/cmb.1995.2.139
21 https://doi.org/10.1093/ietisy/e91-d.2.170
22 https://doi.org/10.1137/0205049
23 https://doi.org/10.1137/0211056
24 schema:datePublished 2009
25 schema:datePublishedReg 2009-01-01
26 schema:description The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach.
27 schema:editor N92cd5d69e28a43dd9104b2e9c59891ae
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N724d4367f49d45119533f64091b5d647
32 schema:name The Longest Path Problem Is Polynomial on Interval Graphs
33 schema:pagination 403-414
34 schema:productId Na773ea4bb62b46e98ff72da9e4abf26d
35 Nde5acfcf6fe3484fa40a1683d78cc756
36 Nfd1b704f060f45d18a8418d30c1b181e
37 schema:publisher N71515eabcb604199918af147a45566d8
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034196859
39 https://doi.org/10.1007/978-3-642-03816-7_35
40 schema:sdDatePublished 2019-04-15T11:35
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N409ac1450d274c48a38e626481d5c9fe
43 schema:url http://link.springer.com/10.1007/978-3-642-03816-7_35
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N0e3018df9f77490c9675712b92b3fe3d schema:familyName Niwiński
48 schema:givenName Damian
49 rdf:type schema:Person
50 N409ac1450d274c48a38e626481d5c9fe schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N474cb34ac08b4147a68dd4f398e03e85 rdf:first sg:person.011724474746.51
53 rdf:rest rdf:nil
54 N53b3db04ff6243918aa70163a34af337 rdf:first sg:person.07470745761.85
55 rdf:rest N474cb34ac08b4147a68dd4f398e03e85
56 N71515eabcb604199918af147a45566d8 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N724d4367f49d45119533f64091b5d647 schema:isbn 978-3-642-03815-0
60 978-3-642-03816-7
61 schema:name Mathematical Foundations of Computer Science 2009
62 rdf:type schema:Book
63 N89506ebb30c244d691d65ca4ca8b7a97 rdf:first sg:person.07355624061.11
64 rdf:rest N53b3db04ff6243918aa70163a34af337
65 N92cd5d69e28a43dd9104b2e9c59891ae rdf:first Nc667b45a262344efb553c5a3f4f84f6c
66 rdf:rest Ndb7f72355e8f4c3b87e14f9a07d932af
67 Na773ea4bb62b46e98ff72da9e4abf26d schema:name doi
68 schema:value 10.1007/978-3-642-03816-7_35
69 rdf:type schema:PropertyValue
70 Nc667b45a262344efb553c5a3f4f84f6c schema:familyName Královič
71 schema:givenName Rastislav
72 rdf:type schema:Person
73 Ndb7f72355e8f4c3b87e14f9a07d932af rdf:first N0e3018df9f77490c9675712b92b3fe3d
74 rdf:rest rdf:nil
75 Nde5acfcf6fe3484fa40a1683d78cc756 schema:name dimensions_id
76 schema:value pub.1034196859
77 rdf:type schema:PropertyValue
78 Nfd1b704f060f45d18a8418d30c1b181e schema:name readcube_id
79 schema:value a2e70d57976669f8d9ced086714f4ea166615e3f4e4b33fb817df2316f09e909
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
85 schema:name Computation Theory and Mathematics
86 rdf:type schema:DefinedTerm
87 sg:person.011724474746.51 schema:affiliation https://www.grid.ac/institutes/grid.9594.1
88 schema:familyName Nikolopoulos
89 schema:givenName Stavros D.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724474746.51
91 rdf:type schema:Person
92 sg:person.07355624061.11 schema:affiliation https://www.grid.ac/institutes/grid.9594.1
93 schema:familyName Ioannidou
94 schema:givenName Kyriaki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355624061.11
96 rdf:type schema:Person
97 sg:person.07470745761.85 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
98 schema:familyName Mertzios
99 schema:givenName George B.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07470745761.85
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-540-30551-4_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021479036
103 https://doi.org/10.1007/978-3-540-30551-4_74
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-540-92182-0_66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045644398
106 https://doi.org/10.1007/978-3-540-92182-0_66
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00571188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025398696
109 https://doi.org/10.1007/bf00571188
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02523689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048536748
112 https://doi.org/10.1007/bf02523689
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0012-365x(93)90223-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1019842874
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0012-365x(95)00057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019406771
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0020-0190(83)90078-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018477486
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0020-0190(85)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011139166
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0020-0190(88)90091-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042362113
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0020-0190(89)90059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037815836
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0020-0190(90)90064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017022514
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.dam.2009.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010457306
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ipl.2007.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045057680
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.tcs.2007.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217375
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0020-0190(01)00198-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038695986
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0196-6774(03)00093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038966763
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1089/cmb.1995.2.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245091
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/ietisy/e91-d.2.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059672421
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/0205049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841335
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/0211056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841672
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
147 schema:name Department of Computer Science, RWTH Aachen University, Germany
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.9594.1 schema:alternateName University of Ioannina
150 schema:name Department of Computer Science, University of Ioannina, Greece
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...