2009
AUTHORSPaweł Gawrychowski , Artur Jeż
ABSTRACTWe consider a problem of hyper-minimisation of an automaton [2,3]: given a DFA M we want to compute a smallest automaton N such that the language L(M) ΔL(N) is finite, where Δ denotes the symmetric difference. We improve the previously known \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O (|\Sigma|n^2)$\end{document} solution by giving an expected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O (|\delta|\log n)$\end{document} time algorithm for this problem, where |δ| is the size of the (potentially partial) transition function. We also give a slightly slower deterministic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(|\delta|\log^2 n)$\end{document} version of the algorithm.Then we introduce a similar problem of k-minimisation: for an automaton M and number k we want to find a smallest automaton N such that L(M) ΔL(N) ⊆ Σ< k, i.e. the languages they recognize differ only on words of length less than k. We characterise such minimal automata and give algorithm with a similar complexity for this problem. More... »
PAGES356-368
Mathematical Foundations of Computer Science 2009
ISBN
978-3-642-03815-0
978-3-642-03816-7
http://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_31
DOIhttp://dx.doi.org/10.1007/978-3-642-03816-7_31
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017648139
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Linguistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Institute of Computer Science, University of Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Gawrychowski",
"givenName": "Pawe\u0142",
"id": "sg:person.013657430751.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657430751.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Institute of Computer Science, University of Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "We consider a problem of hyper-minimisation of an automaton [2,3]: given a DFA M we want to compute a smallest automaton N such that the language L(M) \u0394L(N) is finite, where \u0394 denotes the symmetric difference. We improve the previously known \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O (|\\Sigma|n^2)$\\end{document} solution by giving an expected \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O (|\\delta|\\log n)$\\end{document} time algorithm for this problem, where |\u03b4| is the size of the (potentially partial) transition function. We also give a slightly slower deterministic \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O(|\\delta|\\log^2 n)$\\end{document} version of the algorithm.Then we introduce a similar problem of k-minimisation: for an automaton M and number k we want to find a smallest automaton N such that L(M) \u0394L(N)\u2009\u2286\u2009\u03a3<\u2009k, i.e. the languages they recognize differ only on words of length less than k. We characterise such minimal automata and give algorithm with a similar complexity for this problem.",
"editor": [
{
"familyName": "Kr\u00e1lovi\u010d",
"givenName": "Rastislav",
"type": "Person"
},
{
"familyName": "Niwi\u0144ski",
"givenName": "Damian",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-03816-7_31",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-03815-0",
"978-3-642-03816-7"
],
"name": "Mathematical Foundations of Computer Science 2009",
"type": "Book"
},
"keywords": [
"DFA M",
"minimal automaton",
"language",
"words",
"automaton M",
"words of length",
"automata",
"symmetric difference",
"version",
"similar problems",
"similar complexity",
"complexity",
"problem",
"differences",
"transition function",
"function",
"solution",
"algorithm",
"length",
"time algorithm",
"size",
"minimisation",
"number k"
],
"name": "Hyper-minimisation Made Efficient",
"pagination": "356-368",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017648139"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-03816-7_31"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-03816-7_31",
"https://app.dimensions.ai/details/publication/pub.1017648139"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_168.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-03816-7_31"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_31'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_31'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_31'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03816-7_31'
This table displays all metadata directly associated to this object as RDF triples.
95 TRIPLES
23 PREDICATES
49 URIs
42 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-03816-7_31 | schema:about | anzsrc-for:20 |
2 | ″ | ″ | anzsrc-for:2004 |
3 | ″ | schema:author | Nd8093515e7344213855c01bfb87da8d7 |
4 | ″ | schema:datePublished | 2009 |
5 | ″ | schema:datePublishedReg | 2009-01-01 |
6 | ″ | schema:description | We consider a problem of hyper-minimisation of an automaton [2,3]: given a DFA M we want to compute a smallest automaton N such that the language L(M) ΔL(N) is finite, where Δ denotes the symmetric difference. We improve the previously known \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O (|\Sigma|n^2)$\end{document} solution by giving an expected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O (|\delta|\log n)$\end{document} time algorithm for this problem, where |δ| is the size of the (potentially partial) transition function. We also give a slightly slower deterministic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(|\delta|\log^2 n)$\end{document} version of the algorithm.Then we introduce a similar problem of k-minimisation: for an automaton M and number k we want to find a smallest automaton N such that L(M) ΔL(N) ⊆ Σ< k, i.e. the languages they recognize differ only on words of length less than k. We characterise such minimal automata and give algorithm with a similar complexity for this problem. |
7 | ″ | schema:editor | N2aed6e0ecf5b461ab006d2516de354bc |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N19d73d71b7ff4f49a964587768cb5bf6 |
12 | ″ | schema:keywords | DFA M |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | automata |
15 | ″ | ″ | automaton M |
16 | ″ | ″ | complexity |
17 | ″ | ″ | differences |
18 | ″ | ″ | function |
19 | ″ | ″ | language |
20 | ″ | ″ | length |
21 | ″ | ″ | minimal automaton |
22 | ″ | ″ | minimisation |
23 | ″ | ″ | number k |
24 | ″ | ″ | problem |
25 | ″ | ″ | similar complexity |
26 | ″ | ″ | similar problems |
27 | ″ | ″ | size |
28 | ″ | ″ | solution |
29 | ″ | ″ | symmetric difference |
30 | ″ | ″ | time algorithm |
31 | ″ | ″ | transition function |
32 | ″ | ″ | version |
33 | ″ | ″ | words |
34 | ″ | ″ | words of length |
35 | ″ | schema:name | Hyper-minimisation Made Efficient |
36 | ″ | schema:pagination | 356-368 |
37 | ″ | schema:productId | N0a2b79a4f2da4ca49dd06837907689cc |
38 | ″ | ″ | N186f9aa9fc704dfea6a30f09901763fd |
39 | ″ | schema:publisher | N375cff4234244600b09b2cf3a86d3153 |
40 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017648139 |
41 | ″ | ″ | https://doi.org/10.1007/978-3-642-03816-7_31 |
42 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
43 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
44 | ″ | schema:sdPublisher | Nff037831d2b04bb3b79c002488b6e5ff |
45 | ″ | schema:url | https://doi.org/10.1007/978-3-642-03816-7_31 |
46 | ″ | sgo:license | sg:explorer/license/ |
47 | ″ | sgo:sdDataset | chapters |
48 | ″ | rdf:type | schema:Chapter |
49 | N0a2b79a4f2da4ca49dd06837907689cc | schema:name | doi |
50 | ″ | schema:value | 10.1007/978-3-642-03816-7_31 |
51 | ″ | rdf:type | schema:PropertyValue |
52 | N186f9aa9fc704dfea6a30f09901763fd | schema:name | dimensions_id |
53 | ″ | schema:value | pub.1017648139 |
54 | ″ | rdf:type | schema:PropertyValue |
55 | N19d73d71b7ff4f49a964587768cb5bf6 | schema:isbn | 978-3-642-03815-0 |
56 | ″ | ″ | 978-3-642-03816-7 |
57 | ″ | schema:name | Mathematical Foundations of Computer Science 2009 |
58 | ″ | rdf:type | schema:Book |
59 | N2aed6e0ecf5b461ab006d2516de354bc | rdf:first | N8b76de944af148f2a1f3c89668e7fe90 |
60 | ″ | rdf:rest | Na8bc0f84a58b4db68e07ea3ebcdcda3f |
61 | N375cff4234244600b09b2cf3a86d3153 | schema:name | Springer Nature |
62 | ″ | rdf:type | schema:Organisation |
63 | N63e687aedbce44d792b58a78c401a75c | schema:familyName | Niwiński |
64 | ″ | schema:givenName | Damian |
65 | ″ | rdf:type | schema:Person |
66 | N8b76de944af148f2a1f3c89668e7fe90 | schema:familyName | Královič |
67 | ″ | schema:givenName | Rastislav |
68 | ″ | rdf:type | schema:Person |
69 | Na8bc0f84a58b4db68e07ea3ebcdcda3f | rdf:first | N63e687aedbce44d792b58a78c401a75c |
70 | ″ | rdf:rest | rdf:nil |
71 | Nd8093515e7344213855c01bfb87da8d7 | rdf:first | sg:person.013657430751.28 |
72 | ″ | rdf:rest | Ne536f80cde994bab8f4bc345b6a9bd98 |
73 | Ne536f80cde994bab8f4bc345b6a9bd98 | rdf:first | sg:person.015252371751.76 |
74 | ″ | rdf:rest | rdf:nil |
75 | Nff037831d2b04bb3b79c002488b6e5ff | schema:name | Springer Nature - SN SciGraph project |
76 | ″ | rdf:type | schema:Organization |
77 | anzsrc-for:20 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Language, Communication and Culture |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:2004 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Linguistics |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:person.013657430751.28 | schema:affiliation | grid-institutes:grid.8505.8 |
84 | ″ | schema:familyName | Gawrychowski |
85 | ″ | schema:givenName | Paweł |
86 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657430751.28 |
87 | ″ | rdf:type | schema:Person |
88 | sg:person.015252371751.76 | schema:affiliation | grid-institutes:grid.8505.8 |
89 | ″ | schema:familyName | Jeż |
90 | ″ | schema:givenName | Artur |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76 |
92 | ″ | rdf:type | schema:Person |
93 | grid-institutes:grid.8505.8 | schema:alternateName | Institute of Computer Science, University of Wrocław, Poland |
94 | ″ | schema:name | Institute of Computer Science, University of Wrocław, Poland |
95 | ″ | rdf:type | schema:Organization |