Canonical Reduction Systems in Symbolic Mathematics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Franz Winkler

ABSTRACT

Many algorithmic methods in mathematics can be seen as constructing canonical reduction systems for deciding membership problems. Important examples are the Gauss elimination method for linear systems, Euclid’s algorithm for computing greatest common divisors, Buchberger’s algorithm for constructing Gröbner bases, or the Knuth-Bendix procedure for equational theories. We explain the basic concept of a canonical reduction system and investigate the close connections between these algorithms. More... »

PAGES

123-135

References to SciGraph publications

  • 1993. String-Rewriting Systems in NONE
  • 1996. Polynomial Algorithms in Computer Algebra in NONE
  • 1996-03. Polynomial algorithms in computer algebra in APPLICABLE ALGEBRA IN ENGINEERING, COMMUNICATION AND COMPUTING
  • 1995. Reduktionssysteme, Rechnen und Schließen in gleichungsdefinierten Strukturen in NONE
  • Book

    TITLE

    Algebraic Informatics

    ISBN

    978-3-642-03563-0
    978-3-642-03564-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-03564-7_7

    DOI

    http://dx.doi.org/10.1007/978-3-642-03564-7_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032530739


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johannes Kepler University of Linz", 
              "id": "https://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "RISC, Johannes Kepler University, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Winkler", 
            "givenName": "Franz", 
            "id": "sg:person.011460276755.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460276755.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-79351-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003849315", 
              "https://doi.org/10.1007/978-3-642-79351-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-79351-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003849315", 
              "https://doi.org/10.1007/978-3-642-79351-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1018692631", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-9771-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018692631", 
              "https://doi.org/10.1007/978-1-4613-9771-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-9771-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018692631", 
              "https://doi.org/10.1007/978-1-4613-9771-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1089389.1089396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026062037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6571-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045404771", 
              "https://doi.org/10.1007/978-3-7091-6571-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-6571-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045404771", 
              "https://doi.org/10.1007/978-3-7091-6571-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01191382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050599313", 
              "https://doi.org/10.1007/bf01191382"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "Many algorithmic methods in mathematics can be seen as constructing canonical reduction systems for deciding membership problems. Important examples are the Gauss elimination method for linear systems, Euclid\u2019s algorithm for computing greatest common divisors, Buchberger\u2019s algorithm for constructing Gr\u00f6bner bases, or the Knuth-Bendix procedure for equational theories. We explain the basic concept of a canonical reduction system and investigate the close connections between these algorithms.", 
        "editor": [
          {
            "familyName": "Bozapalidis", 
            "givenName": "Symeon", 
            "type": "Person"
          }, 
          {
            "familyName": "Rahonis", 
            "givenName": "George", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-03564-7_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-03563-0", 
            "978-3-642-03564-7"
          ], 
          "name": "Algebraic Informatics", 
          "type": "Book"
        }, 
        "name": "Canonical Reduction Systems in Symbolic Mathematics", 
        "pagination": "123-135", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-03564-7_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9af8e36a4461b948773f5679c81b7ebafb0b766aa9384cf0f84fdf9d89fdfc8d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032530739"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-03564-7_7", 
          "https://app.dimensions.ai/details/publication/pub.1032530739"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000056.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-03564-7_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03564-7_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03564-7_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03564-7_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03564-7_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-03564-7_7 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N8241f6709efe41729c8161b09cc7525b
    4 schema:citation sg:pub.10.1007/978-1-4613-9771-7
    5 sg:pub.10.1007/978-3-642-79351-6
    6 sg:pub.10.1007/978-3-7091-6571-3
    7 sg:pub.10.1007/bf01191382
    8 https://app.dimensions.ai/details/publication/pub.1018692631
    9 https://doi.org/10.1145/1089389.1089396
    10 schema:datePublished 2009
    11 schema:datePublishedReg 2009-01-01
    12 schema:description Many algorithmic methods in mathematics can be seen as constructing canonical reduction systems for deciding membership problems. Important examples are the Gauss elimination method for linear systems, Euclid’s algorithm for computing greatest common divisors, Buchberger’s algorithm for constructing Gröbner bases, or the Knuth-Bendix procedure for equational theories. We explain the basic concept of a canonical reduction system and investigate the close connections between these algorithms.
    13 schema:editor Naaea9b651a904643bee468a718efca0c
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N8be7d8c2494146fd956e5c6c9fedeb07
    18 schema:name Canonical Reduction Systems in Symbolic Mathematics
    19 schema:pagination 123-135
    20 schema:productId N6fe6d8ab7b804bf58cd6bada79807659
    21 Nac449e6e9ab44ac295b160c3db407842
    22 Ne84a30486e6b486ba2b1d2f2ce0c3c34
    23 schema:publisher Nef53fb127fe54fcab3f4b85099c747da
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032530739
    25 https://doi.org/10.1007/978-3-642-03564-7_7
    26 schema:sdDatePublished 2019-04-15T20:49
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N30f75160bc8f4cc0a152c1c644c0def8
    29 schema:url http://link.springer.com/10.1007/978-3-642-03564-7_7
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N0aa65a3e77de4784ae8e61ea3ef8d0e4 schema:familyName Bozapalidis
    34 schema:givenName Symeon
    35 rdf:type schema:Person
    36 N2ba3a8cc77a54bd3a8d688c3607f29cb rdf:first N30694a3252a1493fa3eb3761092a5fab
    37 rdf:rest rdf:nil
    38 N30694a3252a1493fa3eb3761092a5fab schema:familyName Rahonis
    39 schema:givenName George
    40 rdf:type schema:Person
    41 N30f75160bc8f4cc0a152c1c644c0def8 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N6fe6d8ab7b804bf58cd6bada79807659 schema:name readcube_id
    44 schema:value 9af8e36a4461b948773f5679c81b7ebafb0b766aa9384cf0f84fdf9d89fdfc8d
    45 rdf:type schema:PropertyValue
    46 N8241f6709efe41729c8161b09cc7525b rdf:first sg:person.011460276755.42
    47 rdf:rest rdf:nil
    48 N8be7d8c2494146fd956e5c6c9fedeb07 schema:isbn 978-3-642-03563-0
    49 978-3-642-03564-7
    50 schema:name Algebraic Informatics
    51 rdf:type schema:Book
    52 Naaea9b651a904643bee468a718efca0c rdf:first N0aa65a3e77de4784ae8e61ea3ef8d0e4
    53 rdf:rest N2ba3a8cc77a54bd3a8d688c3607f29cb
    54 Nac449e6e9ab44ac295b160c3db407842 schema:name dimensions_id
    55 schema:value pub.1032530739
    56 rdf:type schema:PropertyValue
    57 Ne84a30486e6b486ba2b1d2f2ce0c3c34 schema:name doi
    58 schema:value 10.1007/978-3-642-03564-7_7
    59 rdf:type schema:PropertyValue
    60 Nef53fb127fe54fcab3f4b85099c747da schema:location Berlin, Heidelberg
    61 schema:name Springer Berlin Heidelberg
    62 rdf:type schema:Organisation
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Computation Theory and Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:person.011460276755.42 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
    70 schema:familyName Winkler
    71 schema:givenName Franz
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011460276755.42
    73 rdf:type schema:Person
    74 sg:pub.10.1007/978-1-4613-9771-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018692631
    75 https://doi.org/10.1007/978-1-4613-9771-7
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/978-3-642-79351-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849315
    78 https://doi.org/10.1007/978-3-642-79351-6
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/978-3-7091-6571-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045404771
    81 https://doi.org/10.1007/978-3-7091-6571-3
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01191382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050599313
    84 https://doi.org/10.1007/bf01191382
    85 rdf:type schema:CreativeWork
    86 https://app.dimensions.ai/details/publication/pub.1018692631 schema:CreativeWork
    87 https://doi.org/10.1145/1089389.1089396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026062037
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
    90 schema:name RISC, Johannes Kepler University, Linz, Austria
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...