Ontology type: schema:Chapter Open Access: True
2009
AUTHORSPiotr Berman , Bhaskar DasGupta , Marek Karpinski
ABSTRACTWe consider minimum equivalent digraph problem, its maximum optimization variant and some non-trivial extensions of these two types of problems motivated by biological and social network applications. We provide \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2}$\end{document}-approximation algorithms for all the minimization problems and 2-approximation algorithms for all the maximization problems using appropriate primal-dual polytopes. We also show lower bounds on the integrality gap of the polytope to provide some intuition on the final limit of such approaches. Furthermore, we provide APX-hardness result for all those problems even if the length of all simple cycles is bounded by 5. More... »
PAGES74-85
Algorithms and Data Structures
ISBN
978-3-642-03366-7
978-3-642-03367-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-03367-4_7
DOIhttp://dx.doi.org/10.1007/978-3-642-03367-4_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041450529
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Research partially done while visiting Dept. of Computer Science, University of Bonn and supported by DFG grant Bo 56/174-1, Pennsylvania State University, University Park, 16802, PA, USA",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Research partially done while visiting Dept. of Computer Science, University of Bonn and supported by DFG grant Bo 56/174-1, Pennsylvania State University, University Park, 16802, PA, USA"
],
"type": "Organization"
},
"familyName": "Berman",
"givenName": "Piotr",
"id": "sg:person.01274506210.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA",
"id": "http://www.grid.ac/institutes/grid.185648.6",
"name": [
"Supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA"
],
"type": "Organization"
},
"familyName": "DasGupta",
"givenName": "Bhaskar",
"id": "sg:person.0763403270.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Supported in part by DFG grants, Procope grant 31022, and Hausdorff Center research grant EXC59-1, University of Bonn, 53117, Bonn, Germany",
"id": "http://www.grid.ac/institutes/grid.10388.32",
"name": [
"Supported in part by DFG grants, Procope grant 31022, and Hausdorff Center research grant EXC59-1, University of Bonn, 53117, Bonn, Germany"
],
"type": "Organization"
},
"familyName": "Karpinski",
"givenName": "Marek",
"id": "sg:person.011636042271.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636042271.02"
],
"type": "Person"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "We consider minimum equivalent digraph problem, its maximum optimization variant and some non-trivial extensions of these two types of problems motivated by biological and social network applications. We provide \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\frac{3}{2}$\\end{document}-approximation algorithms for all the minimization problems and 2-approximation algorithms for all the maximization problems using appropriate primal-dual polytopes. We also show lower bounds on the integrality gap of the polytope to provide some intuition on the final limit of such approaches. Furthermore, we provide APX-hardness result for all those problems even if the length of all simple cycles is bounded by 5.",
"editor": [
{
"familyName": "Dehne",
"givenName": "Frank",
"type": "Person"
},
{
"familyName": "Gavrilova",
"givenName": "Marina",
"type": "Person"
},
{
"familyName": "Sack",
"givenName": "J\u00f6rg-R\u00fcdiger",
"type": "Person"
},
{
"familyName": "T\u00f3th",
"givenName": "Csaba D.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-03367-4_7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-03366-7",
"978-3-642-03367-4"
],
"name": "Algorithms and Data Structures",
"type": "Book"
},
"keywords": [
"APX-hardness result",
"non-trivial extension",
"types of problems",
"digraph problems",
"Directed Networks",
"minimization problem",
"lower bounds",
"approximation algorithm",
"optimization variants",
"integrality gap",
"maximization problem",
"transitive reduction",
"polytope",
"simple cycle",
"problem",
"network applications",
"algorithm",
"bounds",
"such approaches",
"extension",
"final limit",
"intuition",
"network",
"applications",
"limit",
"approach",
"gap",
"results",
"social network applications",
"length",
"types",
"variants",
"reduction",
"cycle"
],
"name": "Approximating Transitive Reductions for Directed Networks",
"pagination": "74-85",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041450529"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-03367-4_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-03367-4_7",
"https://app.dimensions.ai/details/publication/pub.1041450529"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_53.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-03367-4_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03367-4_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03367-4_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03367-4_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03367-4_7'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
23 PREDICATES
60 URIs
53 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-03367-4_7 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | Nfed440b336174f30a6931777395afbc1 |
4 | ″ | schema:datePublished | 2009 |
5 | ″ | schema:datePublishedReg | 2009-01-01 |
6 | ″ | schema:description | We consider minimum equivalent digraph problem, its maximum optimization variant and some non-trivial extensions of these two types of problems motivated by biological and social network applications. We provide \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2}$\end{document}-approximation algorithms for all the minimization problems and 2-approximation algorithms for all the maximization problems using appropriate primal-dual polytopes. We also show lower bounds on the integrality gap of the polytope to provide some intuition on the final limit of such approaches. Furthermore, we provide APX-hardness result for all those problems even if the length of all simple cycles is bounded by 5. |
7 | ″ | schema:editor | N52aca9f5e1924410aba2c2372c02ae64 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nfb6a4490d2db4e6583485e7234fdad05 |
12 | ″ | schema:keywords | APX-hardness result |
13 | ″ | ″ | Directed Networks |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | applications |
16 | ″ | ″ | approach |
17 | ″ | ″ | approximation algorithm |
18 | ″ | ″ | bounds |
19 | ″ | ″ | cycle |
20 | ″ | ″ | digraph problems |
21 | ″ | ″ | extension |
22 | ″ | ″ | final limit |
23 | ″ | ″ | gap |
24 | ″ | ″ | integrality gap |
25 | ″ | ″ | intuition |
26 | ″ | ″ | length |
27 | ″ | ″ | limit |
28 | ″ | ″ | lower bounds |
29 | ″ | ″ | maximization problem |
30 | ″ | ″ | minimization problem |
31 | ″ | ″ | network |
32 | ″ | ″ | network applications |
33 | ″ | ″ | non-trivial extension |
34 | ″ | ″ | optimization variants |
35 | ″ | ″ | polytope |
36 | ″ | ″ | problem |
37 | ″ | ″ | reduction |
38 | ″ | ″ | results |
39 | ″ | ″ | simple cycle |
40 | ″ | ″ | social network applications |
41 | ″ | ″ | such approaches |
42 | ″ | ″ | transitive reduction |
43 | ″ | ″ | types |
44 | ″ | ″ | types of problems |
45 | ″ | ″ | variants |
46 | ″ | schema:name | Approximating Transitive Reductions for Directed Networks |
47 | ″ | schema:pagination | 74-85 |
48 | ″ | schema:productId | N58989973190d4c74919e9736d87220de |
49 | ″ | ″ | Nb3979a817f244fde978dcaf5f8339f2f |
50 | ″ | schema:publisher | N4aff0162a736423ba5c050c7a1dc4f65 |
51 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041450529 |
52 | ″ | ″ | https://doi.org/10.1007/978-3-642-03367-4_7 |
53 | ″ | schema:sdDatePublished | 2022-05-10T10:54 |
54 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
55 | ″ | schema:sdPublisher | Ndd631a40112243f3ad080b56820d5fd6 |
56 | ″ | schema:url | https://doi.org/10.1007/978-3-642-03367-4_7 |
57 | ″ | sgo:license | sg:explorer/license/ |
58 | ″ | sgo:sdDataset | chapters |
59 | ″ | rdf:type | schema:Chapter |
60 | N0024fbff02934c9b8b7a6c7ffdca3a55 | rdf:first | N437eb2d2530b4d55abd2d2ee8a0aac10 |
61 | ″ | rdf:rest | N37683a197dc44c6fbc16bf4968f6577b |
62 | N017b73221cd24c22812197300fbdbb6e | rdf:first | sg:person.0763403270.10 |
63 | ″ | rdf:rest | Ne20985b7cc5a44beb62ee54604f43752 |
64 | N37683a197dc44c6fbc16bf4968f6577b | rdf:first | Nbdef64cc561b4402b84abb41539c93ca |
65 | ″ | rdf:rest | Na253e611cd1340f280b4d331d2133ee9 |
66 | N437eb2d2530b4d55abd2d2ee8a0aac10 | schema:familyName | Gavrilova |
67 | ″ | schema:givenName | Marina |
68 | ″ | rdf:type | schema:Person |
69 | N4aff0162a736423ba5c050c7a1dc4f65 | schema:name | Springer Nature |
70 | ″ | rdf:type | schema:Organisation |
71 | N52aca9f5e1924410aba2c2372c02ae64 | rdf:first | Ne06ff979af804cf1bfaba0f393c5553d |
72 | ″ | rdf:rest | N0024fbff02934c9b8b7a6c7ffdca3a55 |
73 | N58989973190d4c74919e9736d87220de | schema:name | doi |
74 | ″ | schema:value | 10.1007/978-3-642-03367-4_7 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | N9b7d9058af1f4465b005c5fa51ad9fcf | schema:familyName | Tóth |
77 | ″ | schema:givenName | Csaba D. |
78 | ″ | rdf:type | schema:Person |
79 | Na253e611cd1340f280b4d331d2133ee9 | rdf:first | N9b7d9058af1f4465b005c5fa51ad9fcf |
80 | ″ | rdf:rest | rdf:nil |
81 | Nb3979a817f244fde978dcaf5f8339f2f | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1041450529 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | Nbdef64cc561b4402b84abb41539c93ca | schema:familyName | Sack |
85 | ″ | schema:givenName | Jörg-Rüdiger |
86 | ″ | rdf:type | schema:Person |
87 | Ndd631a40112243f3ad080b56820d5fd6 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | Ne06ff979af804cf1bfaba0f393c5553d | schema:familyName | Dehne |
90 | ″ | schema:givenName | Frank |
91 | ″ | rdf:type | schema:Person |
92 | Ne20985b7cc5a44beb62ee54604f43752 | rdf:first | sg:person.011636042271.02 |
93 | ″ | rdf:rest | rdf:nil |
94 | Nfb6a4490d2db4e6583485e7234fdad05 | schema:isbn | 978-3-642-03366-7 |
95 | ″ | ″ | 978-3-642-03367-4 |
96 | ″ | schema:name | Algorithms and Data Structures |
97 | ″ | rdf:type | schema:Book |
98 | Nfed440b336174f30a6931777395afbc1 | rdf:first | sg:person.01274506210.27 |
99 | ″ | rdf:rest | N017b73221cd24c22812197300fbdbb6e |
100 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Mathematical Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Applied Mathematics |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:person.011636042271.02 | schema:affiliation | grid-institutes:grid.10388.32 |
107 | ″ | schema:familyName | Karpinski |
108 | ″ | schema:givenName | Marek |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011636042271.02 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.01274506210.27 | schema:affiliation | grid-institutes:grid.29857.31 |
112 | ″ | schema:familyName | Berman |
113 | ″ | schema:givenName | Piotr |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274506210.27 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.0763403270.10 | schema:affiliation | grid-institutes:grid.185648.6 |
117 | ″ | schema:familyName | DasGupta |
118 | ″ | schema:givenName | Bhaskar |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:grid.10388.32 | schema:alternateName | Supported in part by DFG grants, Procope grant 31022, and Hausdorff Center research grant EXC59-1, University of Bonn, 53117, Bonn, Germany |
122 | ″ | schema:name | Supported in part by DFG grants, Procope grant 31022, and Hausdorff Center research grant EXC59-1, University of Bonn, 53117, Bonn, Germany |
123 | ″ | rdf:type | schema:Organization |
124 | grid-institutes:grid.185648.6 | schema:alternateName | Supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA |
125 | ″ | schema:name | Supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973, University of Illinois at Chicago, 60607-7053, Chicago, IL, USA |
126 | ″ | rdf:type | schema:Organization |
127 | grid-institutes:grid.29857.31 | schema:alternateName | Research partially done while visiting Dept. of Computer Science, University of Bonn and supported by DFG grant Bo 56/174-1, Pennsylvania State University, University Park, 16802, PA, USA |
128 | ″ | schema:name | Research partially done while visiting Dept. of Computer Science, University of Bonn and supported by DFG grant Bo 56/174-1, Pennsylvania State University, University Park, 16802, PA, USA |
129 | ″ | rdf:type | schema:Organization |