Ontology type: schema:Chapter
2009
AUTHORS ABSTRACTConjunctive grammars over an alphabet Σ = {a} are studied, with the focus on the special case with a unique nonterminal symbol. Such a grammar is equivalent to an equation X = ϕ(X) over sets of natural numbers, using union, intersection and addition. It is shown that every grammar with multiple nonterminals can be encoded into a grammar with a single nonterminal, with a slight modification of the language. Based on this construction, the compressed membership problem for one-nonterminal conjunctive grammars over {a} is proved to be EXPTIME-complete, while the equivalence, finiteness and emptiness problems for these grammars are shown to be undecidable. More... »
PAGES191-202
Computer Science - Theory and Applications
ISBN
978-3-642-03350-6
978-3-642-03351-3
http://scigraph.springernature.com/pub.10.1007/978-3-642-03351-3_19
DOIhttp://dx.doi.org/10.1007/978-3-642-03351-3_19
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043966743
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Linguistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Institute of Computer Science, University of Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Turku, Finland",
"id": "http://www.grid.ac/institutes/grid.1374.1",
"name": [
"Academy of Finland, Finland",
"Department of Mathematics, University of Turku, Finland"
],
"type": "Organization"
},
"familyName": "Okhotin",
"givenName": "Alexander",
"id": "sg:person.012144356031.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48"
],
"type": "Person"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "Conjunctive grammars over an alphabet \u03a3\u2009=\u2009{a} are studied, with the focus on the special case with a unique nonterminal symbol. Such a grammar is equivalent to an equation X\u2009=\u2009\u03d5(X) over sets of natural numbers, using union, intersection and addition. It is shown that every grammar with multiple nonterminals can be encoded into a grammar with a single nonterminal, with a slight modification of the language. Based on this construction, the compressed membership problem for one-nonterminal conjunctive grammars over {a} is proved to be EXPTIME-complete, while the equivalence, finiteness and emptiness problems for these grammars are shown to be undecidable.",
"editor": [
{
"familyName": "Frid",
"givenName": "Anna",
"type": "Person"
},
{
"familyName": "Morozov",
"givenName": "Andrey",
"type": "Person"
},
{
"familyName": "Rybalchenko",
"givenName": "Andrey",
"type": "Person"
},
{
"familyName": "Wagner",
"givenName": "Klaus W.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-03351-3_19",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-03350-6",
"978-3-642-03351-3"
],
"name": "Computer Science - Theory and Applications",
"type": "Book"
},
"keywords": [
"conjunctive grammars",
"grammar",
"nonterminal symbols",
"unary alphabet",
"nonterminals",
"membership problem",
"emptiness problem",
"symbols",
"language",
"alphabet",
"intersection",
"construction",
"focus",
"Union",
"equivalence",
"finiteness",
"equation x",
"natural numbers",
"problem",
"cases",
"set",
"special case",
"number",
"addition",
"slight modification",
"modification"
],
"name": "One-Nonterminal Conjunctive Grammars over a Unary Alphabet",
"pagination": "191-202",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043966743"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-03351-3_19"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-03351-3_19",
"https://app.dimensions.ai/details/publication/pub.1043966743"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_367.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-03351-3_19"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03351-3_19'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03351-3_19'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03351-3_19'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03351-3_19'
This table displays all metadata directly associated to this object as RDF triples.
112 TRIPLES
23 PREDICATES
52 URIs
45 LITERALS
7 BLANK NODES