From Machine Learning to Child Learning View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Charles Ling

ABSTRACT

Machine Learning endeavors to make computers learn and improve themselves over time. It is originated from analyzing human learning, and is now maturing as computers can learn more effectively than human for many specific tasks, such as adaptive expert systems and data mining. The effective and fruitful research in machine learning can now be used to improve our thinking and learning, especially for our children. In this talk, I will discuss my efforts in using machine learning (and AI) for child education in Canada and China. In early 2009, I hosted a TV series in a major talk show in China. The impact of such work in China and around the world can be huge. More... »

PAGES

2-2

Book

TITLE

Advanced Data Mining and Applications

ISBN

978-3-642-03347-6
978-3-642-03348-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-03348-3_2

DOI

http://dx.doi.org/10.1007/978-3-642-03348-3_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048728774


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Computer Science, University of Western Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ling", 
        "givenName": "Charles", 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Machine Learning endeavors to make computers learn and improve themselves over time. It is originated from analyzing human learning, and is now maturing as computers can learn more effectively than human for many specific tasks, such as adaptive expert systems and data mining. The effective and fruitful research in machine learning can now be used to improve our thinking and learning, especially for our children. In this talk, I will discuss my efforts in using machine learning (and AI) for child education in Canada and China. In early 2009, I hosted a TV series in a major talk show in China. The impact of such work in China and around the world can be huge.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "Ronghuai", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "familyName": "Pei", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "familyName": "Gama", 
        "givenName": "Jo\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Meng", 
        "givenName": "Xiaofeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Xue", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-03348-3_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-03347-6", 
        "978-3-642-03348-3"
      ], 
      "name": "Advanced Data Mining and Applications", 
      "type": "Book"
    }, 
    "name": "From Machine Learning to Child Learning", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-03348-3_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e822a54f5644ba5a262040ddfc810c3c47f82f6cf7cfc511d1683718733cb899"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048728774"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-03348-3_2", 
      "https://app.dimensions.ai/details/publication/pub.1048728774"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000083.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-03348-3_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03348-3_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03348-3_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03348-3_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03348-3_2'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-03348-3_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5784f5dbf61a4c3fb02cc69a0130ece4
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Machine Learning endeavors to make computers learn and improve themselves over time. It is originated from analyzing human learning, and is now maturing as computers can learn more effectively than human for many specific tasks, such as adaptive expert systems and data mining. The effective and fruitful research in machine learning can now be used to improve our thinking and learning, especially for our children. In this talk, I will discuss my efforts in using machine learning (and AI) for child education in Canada and China. In early 2009, I hosted a TV series in a major talk show in China. The impact of such work in China and around the world can be huge.
7 schema:editor N431bc8d27c3a41789397327fe5d3628d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nef6e162668744e64b0f9febe7df0234e
12 schema:name From Machine Learning to Child Learning
13 schema:pagination 2-2
14 schema:productId N16535dba3e734f79a508348403367d72
15 N6628daf0fddd46aeaa0204843d15c58d
16 N7efdf997bec446f29aa8e246c08c4f8e
17 schema:publisher Nf953d839d43c4dcb9366c06f12e44b57
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048728774
19 https://doi.org/10.1007/978-3-642-03348-3_2
20 schema:sdDatePublished 2019-04-15T21:48
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na66c1a35d35e473da3a5d8b78a992fb9
23 schema:url http://link.springer.com/10.1007/978-3-642-03348-3_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N05d925c16db54c2a972ba3afc59c48f9 schema:familyName Yang
28 schema:givenName Qiang
29 rdf:type schema:Person
30 N11d869813bc542828b8cf98618b5770a schema:familyName Huang
31 schema:givenName Ronghuai
32 rdf:type schema:Person
33 N13ef56bb5c444821a7e147e86d11a18a schema:familyName Gama
34 schema:givenName João
35 rdf:type schema:Person
36 N16535dba3e734f79a508348403367d72 schema:name dimensions_id
37 schema:value pub.1048728774
38 rdf:type schema:PropertyValue
39 N33da66d8d3cb47548901de30ba317737 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
40 schema:familyName Ling
41 schema:givenName Charles
42 rdf:type schema:Person
43 N431bc8d27c3a41789397327fe5d3628d rdf:first N11d869813bc542828b8cf98618b5770a
44 rdf:rest Na7b28a5270e34b018e2245a740bbe337
45 N4e8a74b2410441e88db45f831039348b rdf:first Nf5224d6c91e841a2b79aa3f0d5a0358b
46 rdf:rest rdf:nil
47 N5784f5dbf61a4c3fb02cc69a0130ece4 rdf:first N33da66d8d3cb47548901de30ba317737
48 rdf:rest rdf:nil
49 N6628daf0fddd46aeaa0204843d15c58d schema:name readcube_id
50 schema:value e822a54f5644ba5a262040ddfc810c3c47f82f6cf7cfc511d1683718733cb899
51 rdf:type schema:PropertyValue
52 N7508241dbce1496cb554cd2a96f1612c schema:familyName Pei
53 schema:givenName Jian
54 rdf:type schema:Person
55 N7efdf997bec446f29aa8e246c08c4f8e schema:name doi
56 schema:value 10.1007/978-3-642-03348-3_2
57 rdf:type schema:PropertyValue
58 N8d4332bba88c4ffea6f12e6ea924c3bc rdf:first N7508241dbce1496cb554cd2a96f1612c
59 rdf:rest Ndd390e7322184000a0fb669b53414546
60 Na66c1a35d35e473da3a5d8b78a992fb9 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Na7b28a5270e34b018e2245a740bbe337 rdf:first N05d925c16db54c2a972ba3afc59c48f9
63 rdf:rest N8d4332bba88c4ffea6f12e6ea924c3bc
64 Ncda481fdee694bcfbf5586cc4ca82c14 schema:familyName Meng
65 schema:givenName Xiaofeng
66 rdf:type schema:Person
67 Nd08adb03e0e64a7c9ba3c86920658746 rdf:first Ncda481fdee694bcfbf5586cc4ca82c14
68 rdf:rest N4e8a74b2410441e88db45f831039348b
69 Ndd390e7322184000a0fb669b53414546 rdf:first N13ef56bb5c444821a7e147e86d11a18a
70 rdf:rest Nd08adb03e0e64a7c9ba3c86920658746
71 Nef6e162668744e64b0f9febe7df0234e schema:isbn 978-3-642-03347-6
72 978-3-642-03348-3
73 schema:name Advanced Data Mining and Applications
74 rdf:type schema:Book
75 Nf5224d6c91e841a2b79aa3f0d5a0358b schema:familyName Li
76 schema:givenName Xue
77 rdf:type schema:Person
78 Nf953d839d43c4dcb9366c06f12e44b57 schema:location Berlin, Heidelberg
79 schema:name Springer Berlin Heidelberg
80 rdf:type schema:Organisation
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
88 schema:name Department of Computer Science, University of Western Ontario, Canada
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...