Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

S. Takemoto , H. Yokota , T. Mishima , R. Himeno

ABSTRACT

Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image’s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images. More... »

PAGES

171-180

References to SciGraph publications

  • 2006-11. Graph Cuts and Efficient N-D Image Segmentation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1988-01. Snakes: Active contour models in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1995. The Nature of Statistical Learning Theory in NONE
  • 2004. Segmentation of Left Ventricle via Level Set Method Based on Enriched Speed Term in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2004
  • 2004. Simultaneous Boundary and Partial Volume Estimation in Medical Images in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2004
  • 2005. Segmentation of Neighboring Organs in Medical Image with Model Competition in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2005
  • Book

    TITLE

    Human-Computer Systems Interaction

    ISBN

    978-3-642-03201-1
    978-3-642-03202-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14

    DOI

    http://dx.doi.org/10.1007/978-3-642-03202-8_14

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042205007


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takemoto", 
            "givenName": "S.", 
            "id": "sg:person.0655377142.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655377142.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan", 
                "Living Matter Simulation Research Team, RIKEN, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yokota", 
            "givenName": "H.", 
            "id": "sg:person.013671612241.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671612241.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Saitama University", 
              "id": "https://www.grid.ac/institutes/grid.263023.6", 
              "name": [
                "Department of Information and Computer Sciences, Saitama University, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mishima", 
            "givenName": "T.", 
            "id": "sg:person.013106042101.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Living Matter Simulation Research Team, RIKEN, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Himeno", 
            "givenName": "R.", 
            "id": "sg:person.01107054066.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107054066.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90135-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009496226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(93)90135-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009496226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015108720", 
              "https://doi.org/10.1007/11566465_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11566465_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015108720", 
              "https://doi.org/10.1007/11566465_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016330466", 
              "https://doi.org/10.1007/bf00133570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016330466", 
              "https://doi.org/10.1007/bf00133570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-7934-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896150", 
              "https://doi.org/10.1007/s11263-006-7934-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1361-8415(00)00008-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028748831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033270140", 
              "https://doi.org/10.1007/978-3-540-30135-6_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033270140", 
              "https://doi.org/10.1007/978-3-540-30135-6_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1049-9660(91)90028-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036232048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050627154", 
              "https://doi.org/10.1007/978-3-540-30135-6_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30135-6_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050627154", 
              "https://doi.org/10.1007/978-3-540-30135-6_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.368173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1023800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1995.487742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095761313"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image\u2019s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images.", 
        "editor": [
          {
            "familyName": "Hippe", 
            "givenName": "Zdzis\u0142aw S.", 
            "type": "Person"
          }, 
          {
            "familyName": "Kulikowski", 
            "givenName": "Juliusz L.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-03202-8_14", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-03201-1", 
            "978-3-642-03202-8"
          ], 
          "name": "Human-Computer Systems Interaction", 
          "type": "Book"
        }, 
        "name": "Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information", 
        "pagination": "171-180", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042205007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-03202-8_14"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c90b2b0fdf74630455a39315121427228fa9dc7dc38c0973ddcb17202629f79b"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-03202-8_14", 
          "https://app.dimensions.ai/details/publication/pub.1042205007"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_52997_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-03202-8_14"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-03202-8_14 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nf54eeb0631434974874b04fcff641d45
    4 schema:citation sg:pub.10.1007/11566465_34
    5 sg:pub.10.1007/978-1-4757-2440-0
    6 sg:pub.10.1007/978-3-540-30135-6_15
    7 sg:pub.10.1007/978-3-540-30135-6_53
    8 sg:pub.10.1007/bf00133570
    9 sg:pub.10.1007/s11263-006-7934-5
    10 https://doi.org/10.1016/0031-3203(93)90135-j
    11 https://doi.org/10.1016/1049-9660(91)90028-n
    12 https://doi.org/10.1016/s1361-8415(00)00008-6
    13 https://doi.org/10.1109/34.368173
    14 https://doi.org/10.1109/icnn.1995.487742
    15 https://doi.org/10.1109/tpami.2002.1023800
    16 schema:datePublished 2009
    17 schema:datePublishedReg 2009-01-01
    18 schema:description Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image’s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images.
    19 schema:editor N7ffd64988dd44db2ae8c6a8f3832e92c
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Nfeee08de167444548b40b78562ad5b8a
    24 schema:name Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information
    25 schema:pagination 171-180
    26 schema:productId N32501099bb4a4c3c80aeb7a940649f41
    27 Nb532f9134da74d39b53194c9cdc20ea3
    28 Nea5380acc71640d5ac6df51da86ddf11
    29 schema:publisher Nff15fa2821534d09ae604fafd9d34f51
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042205007
    31 https://doi.org/10.1007/978-3-642-03202-8_14
    32 schema:sdDatePublished 2019-04-16T07:26
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nacaec7d2c85c411bb56d51b6c5372d47
    35 schema:url https://link.springer.com/10.1007%2F978-3-642-03202-8_14
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N23854980a1ae432eb9e4f27a29d2c708 rdf:first sg:person.013671612241.35
    40 rdf:rest N3403115deee6448d9f8c89640b649a40
    41 N32501099bb4a4c3c80aeb7a940649f41 schema:name readcube_id
    42 schema:value c90b2b0fdf74630455a39315121427228fa9dc7dc38c0973ddcb17202629f79b
    43 rdf:type schema:PropertyValue
    44 N3403115deee6448d9f8c89640b649a40 rdf:first sg:person.013106042101.51
    45 rdf:rest Na83deebcf3694807b080b41210bfd7e7
    46 N5cea7002ca794c528413257e8a384f3b schema:familyName Kulikowski
    47 schema:givenName Juliusz L.
    48 rdf:type schema:Person
    49 N77d14a8dba9f45c9b6235d1aaf38344a rdf:first N5cea7002ca794c528413257e8a384f3b
    50 rdf:rest rdf:nil
    51 N7ffd64988dd44db2ae8c6a8f3832e92c rdf:first Na3955161bc5c4fbdb9ad47bcd33e2cd9
    52 rdf:rest N77d14a8dba9f45c9b6235d1aaf38344a
    53 Na3955161bc5c4fbdb9ad47bcd33e2cd9 schema:familyName Hippe
    54 schema:givenName Zdzisław S.
    55 rdf:type schema:Person
    56 Na83deebcf3694807b080b41210bfd7e7 rdf:first sg:person.01107054066.36
    57 rdf:rest rdf:nil
    58 Nacaec7d2c85c411bb56d51b6c5372d47 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Nb532f9134da74d39b53194c9cdc20ea3 schema:name doi
    61 schema:value 10.1007/978-3-642-03202-8_14
    62 rdf:type schema:PropertyValue
    63 Nea5380acc71640d5ac6df51da86ddf11 schema:name dimensions_id
    64 schema:value pub.1042205007
    65 rdf:type schema:PropertyValue
    66 Nf54eeb0631434974874b04fcff641d45 rdf:first sg:person.0655377142.10
    67 rdf:rest N23854980a1ae432eb9e4f27a29d2c708
    68 Nfeee08de167444548b40b78562ad5b8a schema:isbn 978-3-642-03201-1
    69 978-3-642-03202-8
    70 schema:name Human-Computer Systems Interaction
    71 rdf:type schema:Book
    72 Nff15fa2821534d09ae604fafd9d34f51 schema:location Berlin, Heidelberg
    73 schema:name Springer Berlin Heidelberg
    74 rdf:type schema:Organisation
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Artificial Intelligence and Image Processing
    80 rdf:type schema:DefinedTerm
    81 sg:person.01107054066.36 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    82 schema:familyName Himeno
    83 schema:givenName R.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107054066.36
    85 rdf:type schema:Person
    86 sg:person.013106042101.51 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
    87 schema:familyName Mishima
    88 schema:givenName T.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51
    90 rdf:type schema:Person
    91 sg:person.013671612241.35 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    92 schema:familyName Yokota
    93 schema:givenName H.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671612241.35
    95 rdf:type schema:Person
    96 sg:person.0655377142.10 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    97 schema:familyName Takemoto
    98 schema:givenName S.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655377142.10
    100 rdf:type schema:Person
    101 sg:pub.10.1007/11566465_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015108720
    102 https://doi.org/10.1007/11566465_34
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    105 https://doi.org/10.1007/978-1-4757-2440-0
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-540-30135-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033270140
    108 https://doi.org/10.1007/978-3-540-30135-6_15
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-540-30135-6_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050627154
    111 https://doi.org/10.1007/978-3-540-30135-6_53
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf00133570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016330466
    114 https://doi.org/10.1007/bf00133570
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s11263-006-7934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896150
    117 https://doi.org/10.1007/s11263-006-7934-5
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0031-3203(93)90135-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009496226
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/1049-9660(91)90028-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1036232048
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/s1361-8415(00)00008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028748831
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/34.368173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156114
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/icnn.1995.487742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095761313
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/tpami.2002.1023800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742402
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
    132 schema:name Department of Information and Computer Sciences, Saitama University, Saitama, Japan
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
    135 schema:name Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan
    136 Living Matter Simulation Research Team, RIKEN, Saitama, Japan
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...