Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

S. Takemoto , H. Yokota , T. Mishima , R. Himeno

ABSTRACT

Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image’s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images. More... »

PAGES

171-180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14

DOI

http://dx.doi.org/10.1007/978-3-642-03202-8_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042205007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takemoto", 
        "givenName": "S.", 
        "id": "sg:person.0655377142.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655377142.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Living Matter Simulation Research Team, RIKEN, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan", 
            "Living Matter Simulation Research Team, RIKEN, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokota", 
        "givenName": "H.", 
        "id": "sg:person.013671612241.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671612241.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information and Computer Sciences, Saitama University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Department of Information and Computer Sciences, Saitama University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishima", 
        "givenName": "T.", 
        "id": "sg:person.013106042101.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Living Matter Simulation Research Team, RIKEN, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Living Matter Simulation Research Team, RIKEN, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himeno", 
        "givenName": "R.", 
        "id": "sg:person.01107054066.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107054066.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image\u2019s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images.", 
    "editor": [
      {
        "familyName": "Hippe", 
        "givenName": "Zdzis\u0142aw S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kulikowski", 
        "givenName": "Juliusz L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-03202-8_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-03201-1", 
        "978-3-642-03202-8"
      ], 
      "name": "Human-Computer Systems Interaction", 
      "type": "Book"
    }, 
    "keywords": [
      "local classifiers", 
      "segmentation technique", 
      "semi-automatic segmentation technique", 
      "image segmentation techniques", 
      "two-class classification", 
      "process of segmentation", 
      "image segmentation", 
      "neighborhood information", 
      "neighboring images", 
      "complex parameter settings", 
      "segmentation", 
      "classifier", 
      "case of segmentation", 
      "parameter settings", 
      "complicated parameters", 
      "computed tomography images", 
      "anatomical structures", 
      "image artifacts", 
      "images", 
      "rapid advances", 
      "tomography images", 
      "inherent problems", 
      "internal components", 
      "technique", 
      "components of interest", 
      "framework", 
      "classification", 
      "information", 
      "artifacts", 
      "method", 
      "process", 
      "interest", 
      "components", 
      "need", 
      "advances", 
      "data", 
      "quantitative data", 
      "structure", 
      "parameters", 
      "setting", 
      "modalities", 
      "importance", 
      "cases", 
      "region", 
      "detailed quantitative data", 
      "presence", 
      "problem", 
      "image\u2019s internal components"
    ], 
    "name": "Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information", 
    "pagination": "171-180", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042205007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-03202-8_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-03202-8_14", 
      "https://app.dimensions.ai/details/publication/pub.1042205007"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_188.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-03202-8_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-03202-8_14'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-03202-8_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6a20cbcc5bd74086a0544cf63ef1ee02
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Rapid advances in imaging modalities have increased the importance of image segmentation techniques. Image segmentation is a process that divides an image into regions based on the image’s internal components to distinguish between the component of interest and other components. We use this process to analyze the region of the component of interest and acquire more detailed quantitative data about the component. However, almost all processes of segmentation of anatomical structures have inherent problems such as the presence of image artifacts and the need for complex parameter settings. Here, we present a framework for a semi-automatic segmentation technique that incorporates a local classifier derived from a neighboring image. By using the local classifier, we were able to consider otherwise challenging cases of segmentation merely as two-class classifications without any complicated parameters. Our method is simple to implement and easy to operate. We successfully tested the method on computed tomography images.
7 schema:editor N511502fb53bc40ceaf8e3568b06f8f57
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0ac47e5d424e458cb3815ea6936b71de
12 schema:keywords advances
13 anatomical structures
14 artifacts
15 case of segmentation
16 cases
17 classification
18 classifier
19 complex parameter settings
20 complicated parameters
21 components
22 components of interest
23 computed tomography images
24 data
25 detailed quantitative data
26 framework
27 image artifacts
28 image segmentation
29 image segmentation techniques
30 images
31 image’s internal components
32 importance
33 information
34 inherent problems
35 interest
36 internal components
37 local classifiers
38 method
39 modalities
40 need
41 neighborhood information
42 neighboring images
43 parameter settings
44 parameters
45 presence
46 problem
47 process
48 process of segmentation
49 quantitative data
50 rapid advances
51 region
52 segmentation
53 segmentation technique
54 semi-automatic segmentation technique
55 setting
56 structure
57 technique
58 tomography images
59 two-class classification
60 schema:name Segmentation of Anatomical Structure by Using a Local Classifier Derived from Neighborhood Information
61 schema:pagination 171-180
62 schema:productId Nf5982cdb7ff945a7b096e5ee4b705278
63 Nfc6737f856cd41cfb07f3ed351f00610
64 schema:publisher N1c47bc24a5dc48ae9aa728705f5d5b53
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042205007
66 https://doi.org/10.1007/978-3-642-03202-8_14
67 schema:sdDatePublished 2021-11-01T18:49
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N250eea5d065744579eecaa398d702cb5
70 schema:url https://doi.org/10.1007/978-3-642-03202-8_14
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N0ac47e5d424e458cb3815ea6936b71de schema:isbn 978-3-642-03201-1
75 978-3-642-03202-8
76 schema:name Human-Computer Systems Interaction
77 rdf:type schema:Book
78 N1c47bc24a5dc48ae9aa728705f5d5b53 schema:name Springer Nature
79 rdf:type schema:Organisation
80 N1f44fc45ee3e4bb99cfb92eddc38fc75 rdf:first sg:person.01107054066.36
81 rdf:rest rdf:nil
82 N250eea5d065744579eecaa398d702cb5 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N3c2190687e6e4d98ad0980014e81d190 rdf:first sg:person.013671612241.35
85 rdf:rest Nf3a8d87742dc498fbb679440b9719672
86 N511502fb53bc40ceaf8e3568b06f8f57 rdf:first N725ea9efa7594fadbc90415417c66f8d
87 rdf:rest N689e8582ef86417b99c24a40d9e6928a
88 N689e8582ef86417b99c24a40d9e6928a rdf:first Ne5f47406446d48109787aad47afedc87
89 rdf:rest rdf:nil
90 N6a20cbcc5bd74086a0544cf63ef1ee02 rdf:first sg:person.0655377142.10
91 rdf:rest N3c2190687e6e4d98ad0980014e81d190
92 N725ea9efa7594fadbc90415417c66f8d schema:familyName Hippe
93 schema:givenName Zdzisław S.
94 rdf:type schema:Person
95 Ne5f47406446d48109787aad47afedc87 schema:familyName Kulikowski
96 schema:givenName Juliusz L.
97 rdf:type schema:Person
98 Nf3a8d87742dc498fbb679440b9719672 rdf:first sg:person.013106042101.51
99 rdf:rest N1f44fc45ee3e4bb99cfb92eddc38fc75
100 Nf5982cdb7ff945a7b096e5ee4b705278 schema:name doi
101 schema:value 10.1007/978-3-642-03202-8_14
102 rdf:type schema:PropertyValue
103 Nfc6737f856cd41cfb07f3ed351f00610 schema:name dimensions_id
104 schema:value pub.1042205007
105 rdf:type schema:PropertyValue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.01107054066.36 schema:affiliation grid-institutes:grid.7597.c
113 schema:familyName Himeno
114 schema:givenName R.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107054066.36
116 rdf:type schema:Person
117 sg:person.013106042101.51 schema:affiliation grid-institutes:grid.263023.6
118 schema:familyName Mishima
119 schema:givenName T.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51
121 rdf:type schema:Person
122 sg:person.013671612241.35 schema:affiliation grid-institutes:grid.7597.c
123 schema:familyName Yokota
124 schema:givenName H.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671612241.35
126 rdf:type schema:Person
127 sg:person.0655377142.10 schema:affiliation grid-institutes:grid.7597.c
128 schema:familyName Takemoto
129 schema:givenName S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655377142.10
131 rdf:type schema:Person
132 grid-institutes:grid.263023.6 schema:alternateName Department of Information and Computer Sciences, Saitama University, Saitama, Japan
133 schema:name Department of Information and Computer Sciences, Saitama University, Saitama, Japan
134 rdf:type schema:Organization
135 grid-institutes:grid.7597.c schema:alternateName Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan
136 Living Matter Simulation Research Team, RIKEN, Saitama, Japan
137 schema:name Bio-research Infrastructure Construction Team, VCAD System Research Program, RIKEN, Saitama, Japan
138 Living Matter Simulation Research Team, RIKEN, Saitama, Japan
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...