Data-Efficient Information-Theoretic Test Selection View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Marianne Mueller , Rómer Rosales , Harald Steck , Sriram Krishnan , Bharat Rao , Stefan Kramer

ABSTRACT

We use the concept of conditional mutual information (MI) to approach problems involving the selection of variables in the area of medical diagnosis. Computing MI requires estimates of joint distributions over collections of variables. However, in general computing accurate joint distributions conditioned on a large set of variables is expensive in terms of data and computing power. Therefore, one must seek alternative ways to calculate the relevant quantities and still use all the available observations. We describe and compare a basic approach consisting of averaging MI estimates conditioned on individual observations and another approach where it is possible to condition on all observations at once by making some conditional independence assumptions. This yields a data-efficient variant of information maximization for test selection. We present experimental results on public heart disease data and data from a controlled study in the area of breast cancer diagnosis. More... »

PAGES

410-415

Book

TITLE

Artificial Intelligence in Medicine

ISBN

978-3-642-02975-2
978-3-642-02976-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02976-9_58

DOI

http://dx.doi.org/10.1007/978-3-642-02976-9_58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038313551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Informatik, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Marianne", 
        "id": "sg:person.016320133341.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016320133341.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "IKM CAD and Knowledge Solutions, Siemens Healthcare, 19335, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosales", 
        "givenName": "R\u00f3mer", 
        "id": "sg:person.014340232323.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340232323.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "IKM CAD and Knowledge Solutions, Siemens Healthcare, 19335, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steck", 
        "givenName": "Harald", 
        "id": "sg:person.01222644276.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222644276.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "IKM CAD and Knowledge Solutions, Siemens Healthcare, 19335, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnan", 
        "givenName": "Sriram", 
        "id": "sg:person.0776303115.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303115.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "IKM CAD and Knowledge Solutions, Siemens Healthcare, 19335, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "Bharat", 
        "id": "sg:person.016044304027.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044304027.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Informatik, Technische Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Stefan", 
        "id": "sg:person.015570666141.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570666141.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We use the concept of conditional mutual information (MI) to approach problems involving the selection of variables in the area of medical diagnosis. Computing MI requires estimates of joint distributions over collections of variables. However, in general computing accurate joint distributions conditioned on a large set of variables is expensive in terms of data and computing power. Therefore, one must seek alternative ways to calculate the relevant quantities and still use all the available observations. We describe and compare a basic approach consisting of averaging MI estimates conditioned on individual observations and another approach where it is possible to condition on all observations at once by making some conditional independence assumptions. This yields a data-efficient variant of information maximization for test selection. We present experimental results on public heart disease data and data from a controlled study in the area of breast cancer diagnosis.", 
    "editor": [
      {
        "familyName": "Combi", 
        "givenName": "Carlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Shahar", 
        "givenName": "Yuval", 
        "type": "Person"
      }, 
      {
        "familyName": "Abu-Hanna", 
        "givenName": "Ameen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02976-9_58", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02975-2", 
        "978-3-642-02976-9"
      ], 
      "name": "Artificial Intelligence in Medicine", 
      "type": "Book"
    }, 
    "name": "Data-Efficient Information-Theoretic Test Selection", 
    "pagination": "410-415", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038313551"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02976-9_58"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b682edf86d816352fda047872e1643bb9e254da400fd171738a87b6b0a27c2c9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02976-9_58", 
      "https://app.dimensions.ai/details/publication/pub.1038313551"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45357_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-02976-9_58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02976-9_58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02976-9_58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02976-9_58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02976-9_58'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02976-9_58 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5e28d622e1d64664a0561b68531aea1b
4 schema:citation https://doi.org/10.1002/0471200611
5 schema:datePublished 2009
6 schema:datePublishedReg 2009-01-01
7 schema:description We use the concept of conditional mutual information (MI) to approach problems involving the selection of variables in the area of medical diagnosis. Computing MI requires estimates of joint distributions over collections of variables. However, in general computing accurate joint distributions conditioned on a large set of variables is expensive in terms of data and computing power. Therefore, one must seek alternative ways to calculate the relevant quantities and still use all the available observations. We describe and compare a basic approach consisting of averaging MI estimates conditioned on individual observations and another approach where it is possible to condition on all observations at once by making some conditional independence assumptions. This yields a data-efficient variant of information maximization for test selection. We present experimental results on public heart disease data and data from a controlled study in the area of breast cancer diagnosis.
8 schema:editor Nacc9d7ce7c3347f38f1b894e0c3d0667
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N0bf4998ff9db40c58e80b06e8dcb11f8
13 schema:name Data-Efficient Information-Theoretic Test Selection
14 schema:pagination 410-415
15 schema:productId N3deb2db9681940e58792872a8455390d
16 N905d67e65e074484ad46989d0cc2a117
17 Neebdc32cc2b441ed8f1b811fbf27132c
18 schema:publisher Ncf5f4b8e0a7846eeb1370abd0da6fc9e
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038313551
20 https://doi.org/10.1007/978-3-642-02976-9_58
21 schema:sdDatePublished 2019-04-16T07:13
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N0225acb2e50e4edd98c954f26f401e26
24 schema:url https://link.springer.com/10.1007%2F978-3-642-02976-9_58
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0225acb2e50e4edd98c954f26f401e26 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N0bf4998ff9db40c58e80b06e8dcb11f8 schema:isbn 978-3-642-02975-2
31 978-3-642-02976-9
32 schema:name Artificial Intelligence in Medicine
33 rdf:type schema:Book
34 N3deb2db9681940e58792872a8455390d schema:name dimensions_id
35 schema:value pub.1038313551
36 rdf:type schema:PropertyValue
37 N5e28d622e1d64664a0561b68531aea1b rdf:first sg:person.016320133341.53
38 rdf:rest N73fa6ee7f2ee47b780de9b0f2a460313
39 N6a2bdcc116ab45b68942fc6a38d6a2c5 schema:familyName Combi
40 schema:givenName Carlo
41 rdf:type schema:Person
42 N73fa6ee7f2ee47b780de9b0f2a460313 rdf:first sg:person.014340232323.50
43 rdf:rest Ncb9a30ce8e064276b43e1a96fa4c669f
44 N77712b8a08aa4f17a69055cf0c2b01cb schema:familyName Abu-Hanna
45 schema:givenName Ameen
46 rdf:type schema:Person
47 N8434360cf8f940bfabb2bb612cd4b424 rdf:first sg:person.016044304027.90
48 rdf:rest Naa94d060783543979ab9f7011d0e682f
49 N905d67e65e074484ad46989d0cc2a117 schema:name readcube_id
50 schema:value b682edf86d816352fda047872e1643bb9e254da400fd171738a87b6b0a27c2c9
51 rdf:type schema:PropertyValue
52 N91980b61cccb419782f265b2258b5d67 rdf:first N77712b8a08aa4f17a69055cf0c2b01cb
53 rdf:rest rdf:nil
54 N96b9dd392d804ce384dc251656278be5 rdf:first sg:person.0776303115.33
55 rdf:rest N8434360cf8f940bfabb2bb612cd4b424
56 Na5ee77d866d7422d807536853d8976f3 schema:familyName Shahar
57 schema:givenName Yuval
58 rdf:type schema:Person
59 Naa94d060783543979ab9f7011d0e682f rdf:first sg:person.015570666141.60
60 rdf:rest rdf:nil
61 Nacc9d7ce7c3347f38f1b894e0c3d0667 rdf:first N6a2bdcc116ab45b68942fc6a38d6a2c5
62 rdf:rest Nf1e6850d4e104950aa761522909d84a2
63 Ncb9a30ce8e064276b43e1a96fa4c669f rdf:first sg:person.01222644276.98
64 rdf:rest N96b9dd392d804ce384dc251656278be5
65 Ncf5f4b8e0a7846eeb1370abd0da6fc9e schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Neebdc32cc2b441ed8f1b811fbf27132c schema:name doi
69 schema:value 10.1007/978-3-642-02976-9_58
70 rdf:type schema:PropertyValue
71 Nf1e6850d4e104950aa761522909d84a2 rdf:first Na5ee77d866d7422d807536853d8976f3
72 rdf:rest N91980b61cccb419782f265b2258b5d67
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information Systems
78 rdf:type schema:DefinedTerm
79 sg:person.01222644276.98 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
80 schema:familyName Steck
81 schema:givenName Harald
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222644276.98
83 rdf:type schema:Person
84 sg:person.014340232323.50 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
85 schema:familyName Rosales
86 schema:givenName Rómer
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340232323.50
88 rdf:type schema:Person
89 sg:person.015570666141.60 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
90 schema:familyName Kramer
91 schema:givenName Stefan
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570666141.60
93 rdf:type schema:Person
94 sg:person.016044304027.90 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
95 schema:familyName Rao
96 schema:givenName Bharat
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044304027.90
98 rdf:type schema:Person
99 sg:person.016320133341.53 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
100 schema:familyName Mueller
101 schema:givenName Marianne
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016320133341.53
103 rdf:type schema:Person
104 sg:person.0776303115.33 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
105 schema:familyName Krishnan
106 schema:givenName Sriram
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776303115.33
108 rdf:type schema:Person
109 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
112 schema:name IKM CAD and Knowledge Solutions, Siemens Healthcare, 19335, Malvern, PA, USA
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
115 schema:name Institut für Informatik, Technische Universität München, 85748, Garching, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...