Single Molecule Measurement, a Tool for Exploring the Dynamic Mechanism of Biomolecules View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-11-28

AUTHORS

Toshio Yanagida

ABSTRACT

Biomolecules fluctuate in response to thermal agitation. These fluctuations are present at various biological levels ranging from single molecules to more complicated systems like perception. Despite thermal fluctuation often being considered noise, in some cases biomolecules actually utilize them to achieve function. How biomolecules do this is necessary to understand the mechanism underlying their function. Thermal noise causes fast, local motion in the time range of picosecond to nanosecond, which drives slower, collective motions [1]. These large, collective motions and conformational transitions are achieved in the time range of microsecond to millisecond, which is the time needed for a biomolecule to exceed its energy barrier in order to switch between two coordinates in its free-energy landscape. These slower conformational or state changes are likely rate limiting for biomolecule function. More... »

PAGES

219-236

Book

TITLE

Single Molecule Spectroscopy in Chemistry, Physics and Biology

ISBN

978-3-642-02596-9
978-3-642-02597-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02597-6_12

DOI

http://dx.doi.org/10.1007/978-3-642-02597-6_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037500024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Formation of soft nano-machines CREST 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan", 
            "Formation of soft nano-machines CREST 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-11-28", 
    "datePublishedReg": "2009-11-28", 
    "description": "Biomolecules fluctuate in response to thermal agitation. These fluctuations are present at various biological levels ranging from single molecules to more complicated systems like perception. Despite thermal fluctuation often being considered noise, in some cases biomolecules actually utilize them to achieve function. How biomolecules do this is necessary to understand the mechanism underlying their function. Thermal noise causes fast, local motion in the time range of picosecond to nanosecond, which drives slower, collective motions [1]. These large, collective motions and conformational transitions are achieved in the time range of microsecond to millisecond, which is the time needed for a biomolecule to exceed its energy barrier in order to switch between two coordinates in its free-energy landscape. These slower conformational or state changes are likely rate limiting for biomolecule function.", 
    "editor": [
      {
        "familyName": "Gr\u00e4slund", 
        "givenName": "Astrid", 
        "type": "Person"
      }, 
      {
        "familyName": "Rigler", 
        "givenName": "Rudolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Widengren", 
        "givenName": "Jerker", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02597-6_12", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02596-9", 
        "978-3-642-02597-6"
      ], 
      "name": "Single Molecule Spectroscopy in Chemistry, Physics and Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "collective motion", 
      "single-molecule measurements", 
      "time range", 
      "molecule measurements", 
      "thermal noise", 
      "thermal agitation", 
      "single molecules", 
      "thermal fluctuations", 
      "free energy landscape", 
      "biomolecule function", 
      "energy barrier", 
      "biomolecules", 
      "local motion", 
      "picoseconds", 
      "conformational transition", 
      "motion", 
      "nanoseconds", 
      "fluctuations", 
      "microseconds", 
      "complicated system", 
      "transition", 
      "state changes", 
      "noise", 
      "range", 
      "milliseconds", 
      "measurements", 
      "coordinates", 
      "molecules", 
      "dynamic mechanism", 
      "function", 
      "mechanism", 
      "barriers", 
      "order", 
      "system", 
      "biological levels", 
      "agitation", 
      "time", 
      "rate", 
      "changes", 
      "tool", 
      "landscape", 
      "response", 
      "levels", 
      "perception"
    ], 
    "name": "Single Molecule Measurement, a Tool for Exploring the Dynamic Mechanism of Biomolecules", 
    "pagination": "219-236", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037500024"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02597-6_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02597-6_12", 
      "https://app.dimensions.ai/details/publication/pub.1037500024"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_286.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-02597-6_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02597-6_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02597-6_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02597-6_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02597-6_12'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02597-6_12 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ne2672486d64541eabb8dd0c6edcbf5a0
4 schema:datePublished 2009-11-28
5 schema:datePublishedReg 2009-11-28
6 schema:description Biomolecules fluctuate in response to thermal agitation. These fluctuations are present at various biological levels ranging from single molecules to more complicated systems like perception. Despite thermal fluctuation often being considered noise, in some cases biomolecules actually utilize them to achieve function. How biomolecules do this is necessary to understand the mechanism underlying their function. Thermal noise causes fast, local motion in the time range of picosecond to nanosecond, which drives slower, collective motions [1]. These large, collective motions and conformational transitions are achieved in the time range of microsecond to millisecond, which is the time needed for a biomolecule to exceed its energy barrier in order to switch between two coordinates in its free-energy landscape. These slower conformational or state changes are likely rate limiting for biomolecule function.
7 schema:editor Nfadb7409ef5b44aa97f2cdd836fb92f5
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N2b3757d23dd24310acecf7806733bd27
11 schema:keywords agitation
12 barriers
13 biological levels
14 biomolecule function
15 biomolecules
16 changes
17 collective motion
18 complicated system
19 conformational transition
20 coordinates
21 dynamic mechanism
22 energy barrier
23 fluctuations
24 free energy landscape
25 function
26 landscape
27 levels
28 local motion
29 measurements
30 mechanism
31 microseconds
32 milliseconds
33 molecule measurements
34 molecules
35 motion
36 nanoseconds
37 noise
38 order
39 perception
40 picoseconds
41 range
42 rate
43 response
44 single molecules
45 single-molecule measurements
46 state changes
47 system
48 thermal agitation
49 thermal fluctuations
50 thermal noise
51 time
52 time range
53 tool
54 transition
55 schema:name Single Molecule Measurement, a Tool for Exploring the Dynamic Mechanism of Biomolecules
56 schema:pagination 219-236
57 schema:productId N419aee4dd83440da8fa456be014dbd92
58 Nba56d4ce2c1e490c804636e0e23626f1
59 schema:publisher N3d756639e0454f87a9a7c7d93c1b1371
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037500024
61 https://doi.org/10.1007/978-3-642-02597-6_12
62 schema:sdDatePublished 2022-09-02T16:13
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N8f2a63aec5484e0fbbbefef6aa3f1c27
65 schema:url https://doi.org/10.1007/978-3-642-02597-6_12
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N2b3757d23dd24310acecf7806733bd27 schema:isbn 978-3-642-02596-9
70 978-3-642-02597-6
71 schema:name Single Molecule Spectroscopy in Chemistry, Physics and Biology
72 rdf:type schema:Book
73 N3d756639e0454f87a9a7c7d93c1b1371 schema:name Springer Nature
74 rdf:type schema:Organisation
75 N419aee4dd83440da8fa456be014dbd92 schema:name dimensions_id
76 schema:value pub.1037500024
77 rdf:type schema:PropertyValue
78 N8612a5af8e674ef9b28dc000fe005b32 rdf:first Ne152ce4e79c944ea9541d4b142fab0e2
79 rdf:rest Nad38d7bc5c964e1fbadee47b37077745
80 N8f2a63aec5484e0fbbbefef6aa3f1c27 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nad38d7bc5c964e1fbadee47b37077745 rdf:first Ncccc10d2009b4278b2e40de4ed187afc
83 rdf:rest rdf:nil
84 Nba56d4ce2c1e490c804636e0e23626f1 schema:name doi
85 schema:value 10.1007/978-3-642-02597-6_12
86 rdf:type schema:PropertyValue
87 Ncccc10d2009b4278b2e40de4ed187afc schema:familyName Widengren
88 schema:givenName Jerker
89 rdf:type schema:Person
90 Ne152ce4e79c944ea9541d4b142fab0e2 schema:familyName Rigler
91 schema:givenName Rudolf
92 rdf:type schema:Person
93 Ne2672486d64541eabb8dd0c6edcbf5a0 rdf:first sg:person.015141357621.93
94 rdf:rest rdf:nil
95 Nfadb7409ef5b44aa97f2cdd836fb92f5 rdf:first Nfbcb8863a0994b5eac7d7585878799cc
96 rdf:rest N8612a5af8e674ef9b28dc000fe005b32
97 Nfbcb8863a0994b5eac7d7585878799cc schema:familyName Gräslund
98 schema:givenName Astrid
99 rdf:type schema:Person
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
104 schema:name Other Physical Sciences
105 rdf:type schema:DefinedTerm
106 sg:person.015141357621.93 schema:affiliation grid-institutes:None
107 schema:familyName Yanagida
108 schema:givenName Toshio
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
110 rdf:type schema:Person
111 grid-institutes:None schema:alternateName Formation of soft nano-machines CREST 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan
112 schema:name Formation of soft nano-machines CREST 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan
113 Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871, Suita, Osaka, Japan
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...